X ,
X< University

/XN of Basel

Department of DA P H N E
Mathematics and Computer Science

Multilevel Scheduling in Action

for Data Analysis Pipelines with DAPHNE

Florina M. Ciorba

Department of Mathematics and Computer Science
University of Basel
ITU Resource-Aware Data Science Day, February 13, 2023

Joint work with Ahmed Eleliemy

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 957407

Presentation Overview +*¢« DAPHNE

* Multilevel Scheduling
 DAPHNE
* Results

* Next Steps

Presentation Overview +*¢« DAPHNE

* Multilevel Scheduling

Multilevel Parallelism

Multiscale Modeling

Macroscopic Scale

Space: O(mm3—>km3)
Time: O(s—h)

Mesoscopic Scale

Space: 0(0.1—>10mm3)
Time: O(ms)

Microscopic Scale

Space: 0(0.1—>15pm3)
Time: O(ns)

Atomistic Scale

Space: O(1—>300nm3)
Time: O(0—1ps)

Electronic Scale

Space: 0(2—10 AS)
Time: O(0—1fs)

Multilevel Hardware Parallelism

Global Distributed
Systems
HwParallelism 0(10%10°) sites
Time O(m-days)

Local Parallel

Systems
HwParallelism 0(3-10) partitions
Time O(ms-days)
Local
Partitions
Partition Type CPUs GPUs Other coprocs
HwParallelism 0(10%) nodes 0(106? nodes 0(105) nodes
Rpeak O(1) EFLOPIs O(10™") EFLOPIs O(10™) EFLOPIs
Nodes / Cards
Node Type CPUs GPUs Other coprocs
HwParallelism O(10) sockets ~ O(10) cards 0(10) cards
Rpeak 0(10) GFLOPIs 0(10%) GFLOPIs O(10%) GFLOPIs
Chips / Sockets
Core Type CPUs GPUs Other coprocs
HwParallelism 0(109) cores ~ 0(10%10% cores ~ 0(102-10") cores
Rpeak 0(10%) TFLOPIs O(10%) TFLOPIs 0(10%) TFLOPIs
Cores
Vector Type CPUs GPUs Other coprocs
HwParallelism 0(4-8) vect. units O(10%) vect. units 0(10%) vect. units
Rpeak 0(10%instris 0t0Y)instrss 0(10%) instrs
Vectors
Vector Type CPUs GPUs Other coprocs
HwParallelism 0(2-4) data items O(16-256) data items O(16-256) data tems
Rpeak O(2-4)instr/s O(16-256)instr/s O(16-256) instr./s
Pipelines
Single Threaded Multithreaded
HwP: ism O(10) i i 0(100) i
Rpeak 0(10) instructions/ns O(100) instructions/ns
Instructions
HwParallelism O(5) instructions
Rpeak 0(5) instructions/ns

Multilevel Software Parallelism

Global Distributed
Batches
(Batch level parallelism)

SwParallelism 0(10%) local batches

Local Parallel
Batches
(Batch level parallelism)
SwParallelism 0(10%-10") jobs
(#partition types x #partitions x #node types x #nodes)

Jobs
(Job level parallelism)
SwParallelism 0(106) processes
(#nodes x #sockets/node x #CPU cores/socket)

Processes
(Process level parallelism)

Thread Type CPU GPU Other coproc
SwParallelism 0(10%) threads 0(1010%) threads O(1010% threads

Threads

(Thread level parallelism)

Instr. Type CPUs GPUs Other coprocs
SwParallelism 0(4-8) vect.instr, O(10%) vect.instr. 0(10%) vect. instr.

Vectorizable
Instructions
(Instruction level parallelism)

SwParallelism O(5) instructions

Scalar Instructions
(Instruction level parallelism)

SwParallelism O(5) instructions

+"¢« DAPHNE

Performance requires complex
interplay of

Massive

Multilevel

Heterogeneous

Hardware and Software
Parallelism

How to use it all to solve the world’s
most challenging problems?

Multilevel Parallelism

Multiscale Modeling

\

Macroscopic Scale

Space: O(mm3—>km3)
Time: O(s—h)

\ artition Type CPUs ~ GPUs Other coprocs

Multilevel Hardware Parallelism

Multilevel Software Parallelism

Global Distributed
Systems Global Distributed

HwParallelism 0(10%10% sites Batches
Time O(m-days) (Batch level parallelism)

SwParallelism 0(10% local batches

Local Parallel

Systems
HwParallelism 0(3-10) partitions Local Parallel
Time O(ms-days) Batches
(Batch level parallelism)
Lz SwParallelism 0(10°-107) jobs

Partitions " "
(#partition types x #partitions x #node types x #nodes)

HwParallelism 0(10%) nodes 0(106)nodes 0(10%) nodes

Mesoscopic Scale Rpeak O(1)EFLOPIs 0(10°) EFLOPIs 0(10™") EFLOPIS
. 3 Jobs
Space._0(9.1 —10mm®) (Job level parallelism)
Time: O(ms) Nodes / Cards ' 6
SwP: 0(10%) p
Node Type CPUs GPUs Other coprocs (#nodes x #sockets/node x #CPU cores/socket)

Rpeak

Microscopic Scale

Core Type CPUs GPUs Other coprocs
HwParallelism 0(102) cores ~ 0(102-10%) cores 0(10%-10) cores

HwpParallelism O(10) sockets ~ O(10) cards 0(10) cards

0(10%) GFLOPIs 0(10*) GFLOPIs 0(10°) GFLOPIs \

Chips / Sockets

Processes
(Process level parallelism)

Space: O(O.1—>15um3) Rpeak O(10%) TFLOP/s O(109) TFLOPIs O(10%) TFLOP/s
Time: O(ns) Thread Type CPU GPU Other coproc
SwParallelism 0(10° threads 0(10°-10%) threads 0(10-10%) threads
Cores
\ Vector Type CPUs GPUs Other coprocs
HwParallelism 0(4-8) vect. units 0(10%) vect. units O(10%) vect. units Threads
Rpeak o0} instrss O(10Yinstess 0(10%) instrs (Thread level parallelism)
Atomistic Scale Vectors Instr. Type CPUs GPUs Other coprocs

Space: O(1—>300nm3)

) Vector Type CPUs GPUs Other coprocs
Time: O(0—1ps) HwParallelism 0(2-4) data items O(16-256) data tems O(16-256) data items
Rpeak O(2-4)instt/s O(16-256)instrs O(16-256) instr.s Vectorizable
Instructions
Pipelines (Instruction level parallelism)

SwParallelism 0(4-8) vect.instr. O(10) vect. instr. 0(10%) vect.instr

Single Threaded Multithreaded SwParallelism 0(5) instructions

HwParallelism O(10) instructions O(100) instructions ——
Electronic Scale Rpeak 0(10) instructions/ns O(100) instructions/ns
Space: 0(2—10 A3) Instructions Scala_:r Instruction_s
Time: O(0—1fs) HwParallelism O(5) instructions (Instruction level parallelism)
Rpeak 0(5) instructions/ns SwParallelism O(5) instructions

+"¢« DAPHNE

Multilevel Scheduling

Macroscopic scale

Mesoscopic scale

¥

Microscopic scale

Multilevel Scheduling

Multilevel scheduling (MLS)

Batch }------c—=---- S

+"¢« DAPHNE

List Scheduling Algorithms: FCFS, SJF, LSF, EDF, etc.
Schedulers: SLURM, Mesos, Torque, Borg, Omega, etc.

Job Batch

=
2
[
C_E | !
] Applicatiqn
O Procltess/T hread ~
— . . I
< Application Process
E level scheduling
o
&£ Operating | |Thrr?a§ |' %
o evel schedulin
@ System : — g
o Thread T)
) : OS
— level scheduling
N
(@ Rz 2
OO %0 O\\)(b VISS, GSS, TSS, FAC, WF, AWF, BOLD, etc.

Levels of hardware parallelism Algorithm selection: Expert, RL-based

Self-Scheduling Algorithms: SS, FSC, FISS,

£ level scheduling

Application
level scheduling

Libraries: LBAOMP, LB4AMPI

Multilevel Scheduling in Large Scale High Performance Computers, Florina M. Ciorba, https://hpc.dmi.unibas.ch/en/research/mls/

»
»

Multilevel Scheduling
exploits massive,
multilevel,
heterogeneous
parallelism.

Requires Coordination

to expose and exchange
information across levels:
* idle resources

* remaining work

https://hpc.dmi.unibas.ch/en/research/mls/

Interference Between

Batch and Application Level Scheduling

System makespan

11,020.00 seconds

+"« DAPHNE

Effective System Performance (ESP): Mandelbrot

*Q.s 7,500 s .

host 0:0 -’ : host 0:0 Jobs: 230 .
Eost 513:8918 Rost 513:8918 Requested hosts by each job: 2-256

t : t : . . .
hgit 2737 hgit 2737 Batch scheduling: FCFS+BF (SLURM simulation)
Eg:E iggig Rg:g iggig Application scheduling: STATIC (SimGrid simulation)
host 54:54 host 54:54
host 63:63 host 63:63
host 72:72 host 72:72
host 81:81 host 81:81
host 90:90 host 90:90
host 99:99 host 99:99

host 108:108
host 117:117
host 126:126
host 135:135
host 144:144
host 153:153
host 162:162
host 171:171
host 180:180
host 189:189
host 198:198
host 207:207
host 216:216
host 225:225
host 234:234
host 243:243
host 252:252

host 108:108
host 117:117
host 126:126
host 135:135
host 144:144
host 153:153
host 162:162
host 171:171
host 180:180
host 189:189
host 198:198
host 207:207
host 216:216
host 225:225
host 234:234
host 243:243
host 252:252

P T A R R R R R R A R R I A N A A R R A A R

J11

Application load
imbalance causes
system load imbalance

System load imbalance:
ready jobs wait while
free resources exist

Zbom window |
from 415 to 550

Need to reduce idleness
Can applications relinquish the resources
that are no longer needed (no more work)?

Horizontal zoom

_v

7
——

Multilevel Scheduling (MLS) to Reduce Idleness

System makespan 9,607.00 seconds

7

5,000 s /

<+ 13% improvement (previously 11,020 seconds)

450s 500

+*s DAPHNE

Resourceful Coordination Approach (RCA)

host 0:0 host 0:0 #Requested ;
host 9:9 host 9:9 Js oo Batch Level Scheduling
host 3737 host 3727

ost 27: ost 27: App4 App5
host 3636 host 36:36 fobqueve [FUABPAT] AppS | .. _ |
host 45:45 host 45:45 o=
host 54:54 host 54:54 RJMS P
host 63:63 host 63:63
host 72:72 host 72:72
host 81:81 host 81:81))
host 90:90 host 90:90 Rd s R7is
host 99:99 host 99:99 free free
host 108:108 host 108:108 \ |
host 117:117 host 117:117 A A A
host 126126 host 126°126 | _Appt | [_App2 | | App3 |
host 135:135 host 135:135 [) [4 [[) [
host 144:144 host 144:144 Work Work Work Work Work Work

host 153:153
host 162:162

host 153:153
host 162:162

request assignment request assignment request assignment

host 171:171 host 171:171 o | ! l ! l '

S = e :

ost : ost : 3

resLon s e 1ae e | EEL . R

ost : ost : = 1 =" T

host 216216 host 216:216 § [R3liR4|i [R9|[R10|! Relinquished

host 225:225 host 225:225 (% I "”U’”"’”{’d’"“ elinquished resource
nallocate

host 234:234
host 243:243
host 252:252

R

host 234:234
host 243:243
host 252:252

y :
Horizontal zoom

ioom winédow
from 415 to 550

Relinquished resource resources

Application Level Scheduling

Reduced idleness by application
relinquishing no longer needed resources.

A. Eleliemy and F. M. Ciorba. “A Resourceful Coordination Approach for Multilevel Scheduling”.
International Conference on High Performance Computing & Simulation (HPCS 2020) 8

Interference Between
Application Process and Thread Level Scheduling

Process 1

Process 2

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Start

Application execution

+"¢« DAPHNE

End System load imbalance

| Master (process/thread) partitions and assigns work upon workers’ request.

[A

[A1

\
\|

[\

\

—

. Waiting process

(explicit synchronization)

V\
Intra-process

(thread-level) load imbalance

OpenMP runtime

N Wiaiting thread
(Implicit synchronization)

Inter-process
load imbalance

MPI runtime

|:| Computation

Workers only request, wait for, and execute received work.

.'H:-) Master is a bottleneck and induces waiting and idleness.

Idle resource

Need to reduce waiting
Can work partitioning be separate from assignment?

Bottleneck icon by Stephen Plaster from thenounproject.com 9

Multilevel Scheduling (MLS) to Reduce Waiting +*« DAPHNE

* Workers help out master by separating work partitioning and work assignment
* Workers (threads or processes) self-partition work (K;), then self-assign it (it" chunk)
* Implementation: atomic operations (threads) or RMA get-put operations (processes)
* Master ensures atomic updates on “i” (threads) or maintains RMA window (processes)

w7
I

Start Application execution End
Centralized chunk calculation approach (CCA) wg I I |_| | | |
R _ W2 R | | |
K_FISS — KFISS constant ecursive W3 i x| i i [
t i-1 t (difficult to parallelize) w4 N 141 |
W5 AN /| |
Distributed chunk calculation approach (DCA) wg = 'XL /li : | | II
. Not recursive
K/ = KFISS + i « constant «—— el N
(easy to paralle 'ze) = Ye\zljéjTiZigt\g/%rcﬁ:onization) Computation Idle resource

Reduced waiting by eliminating master
and establishing worker cooperation.

A. Eleliemy and F. M. Ciorba. “A Distributed Chunk Calculation Approach for Self-scheduling of
Parallel Applications on Distributed-memory Systems”. Int. J. of Computational Science, 2021. 10

Presentation Overview +*¢« DAPHNE

DAPHNE

11

Data Analysis Pipelines +"¢ DAPHNE

Computation Data processing Training
Application HPC code Data preprocessing Machine learning code
Scientific simulations code Training ML model
Middleware Parallel environments . L.
Mathematical libraries beta progzzsrll?/gFlfi:]akmeWOrks Py'I'\'iIJI;cff:a/'lrI;ivsv:rrll(Ii)w How to EffICIentIy schedule

MPI/OpenMP/BLAS/MKL Integrated Data Analysis Pipelines?
Cluster Resource allocation and mana Aka how to €XplOlt massive,
Management Slurm/Mesos multilevel, heterogeneous parallelism?
Hardware Compute node
infrastructure

High speed Computational
interconnection Storage
network System

TPUs

I Compute node

Local storage High speed network interface

* Pipelines: data management, query processing, high performance computing, complex simulations, training and
scoring for multiple machine learning models

* Integration: increasingly common, sharing compilation, runtime techniques, and converging cluster hardware

N. Ihde et al. “A Survey of Big Data, HPC and Machine Learning Benchmarks”. TPCTC 2021, Copenhagen, Denmark, August 2021. Open Access here. 12

https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/publications/2021/A_Survey_of_Big_Data_High_Performance_Computing_and_Machine_Learning_Benchmarks.pdf

DAPHNE: An Open and Extensible System .
- e s ++ DAPHNE
Infrastructure for Integrated Data Analysis Pipelines

DaphneLib (API) Goal
DaphneDSL Extensible /ntegratte data gnalysis
Infrastructure pipelines to increase
DaphneIR (MLIR Dialect) productivity and eliminate
@ MLIR . unnecessary overheads.
C Multi-level
Optimization Passes C e
ompilation/
MLIR—.Ba.s ed New Runtime Abstractions Runtime .)
Compilation . : Opportunities for scheduling
. for Data, Devices, Operations
Chain
| 1y l Hierarchical Scheduling * Fine-grained
([Device Kernels | Vectorized Sync/Async I/0 EUSI?IH laimd
(CPU, GPU, Execution Engine || Buffer/Memory aratietism
FPGA, SCM) || (Fused Op Pipelines) Management

Local (embedded) and Distributed Environments II{ntegratlci\r/lI W/t
(standalone, HPC, data lake, cloud, DB) esource lvigm
& Prog. Models

https://github.com/daphne-eu/daphne 13

P. Damme et al. DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines. CIDR ’22. Open Access here.
R R R R R R i K R Rbid;bbAiaiiiAARiIZI R RiIi R AR

https://www.researchgate.net/publication/357578796_DAPHNE_An_Open_and_Extensible_System_Infrastructure_for_Integrated_Data_Analysis_Pipelines
https://github.com/daphne-eu/daphne

DaphneSched

Scheme
S L Granularity

partitioning
in Runtime System Work : Queues < ..
__—— 7 assignment Y
Separation of il Runtime System -
responsibilities) Victim
Design Principle byCompier — 5 Ordering : selection

Related

by Runtime System
T — ¢
\) Ti ming Related
to Runtime System Non-
i v adaptive

by Runtime System : H
T~ $ Adaptive (~ Algorithm

Design Princ&

Partitioning
Schemes . Chunk
bk Selection parameter
Coverage
o Work
Design Principle
ueues : Self-
g % Single — cheduling
New work core, CPU,
artitionin device, node . X [
Interface p_ 5 .. \9 Multlple — s\tAeIg;}':\g
Design Principle Victim
Extensibility Scheduling Modify work selection
options partitioning
Work
—— steal ratio

A. Eleliemy and F. M. Ciorba. “DaphneSched: Scheduler for Integrated Data Analysis Pipelines”. In preparation, 2023.

+%s DAPHNE

Four Design Principles

First two incubate multilevel
scheduling of threads,
processes, pipelines across
cores, sockets, devices, nodes

Last two driven by the
DAPHNE philosophy

14

Separation of Responsibilities (a la MLS) +’« DAPHNE

Runtime 1. .V\./or!< 2.. Work Rurtmme Data parallelism
system Partitioning Assignment SVstem Same operator, multiple data
for workers to workers
Functional parallelism
Different operators, multiple data
Runtime .

Compiler system . Redu_ce waiting
identifies 3. Ordering 4. Timing deploys Compiler and runtime system
and organizes work onto have separate responsibilities

dependencies devices

task = operators on data (smallest work unit) 15

Coordination (a la MLS)

Pipelines Collocation
Relinquished resources

IDA Pipelin 1lIDA Pipeline 2
-

Computing resources
allocated to DAPHNE

System computing resources

+"« DAPHNE

Reduce idleness via

Resource relinquishing
DaphneSched relinquishes resources no longer needed by
IDA pipeline 1 to DAPHNE RT

followed by
Collocation

DAPHNE RT collocates IDA pipeline 2 on resources just
relinquished by DaphneSched from IDA Pipeline 1

16

Wide Range Coverage (a la DAPHNE) +’« DAPHNE

Benefits Scheduling Research
by offering a fair testing and comparison
environment for various schemes

Partitioning
schemes*

u Nonadaptive l Adaptive
] . Selection
Without U Profiling based e U ;
profiling ’ I ’ chunk sizg ’ Variable ’ Scheduling
. X Algorithm
Fixed Fixed Variable
u churl1):<esize ’ Variable chunk size
chunk size

Chunk
parameter

U Expert ’U RL ’

chunk size

: x 1 FSC Decreasing
Smss{_&'.:r?cc U Increasing ’U Decreasing ’U Random ’
)) u FAC, BOLD, ’ _ _
FISS, GSS, FAC2, RND PLS, PSS .
VISS TSS, TFSS, Exhaustive ’ Random’ Expert’ RL ’
WEF2
v/ Supported in DAPHNE [Ongoing Work] in DAPHNE

* Work partitioning uses the chunk calculation formulae of the various Dynamic Loop Self-Scheduling schemes L

Wide Range Coverage (a la DAPHNE) +’« DAPHNE

Benefits Adaptive Resource Management
by offering a configurable deployment
environment for various device configurations

Work
Queues

| 1 Per core

. _ Per CPU
u Single ’ u Multiple ’ Per device

‘ l Per node

— Victim selection strategies) |
Self-scheduling* Work-stealing ’
|
I w I w .I e w
Sequential victim ~ Random Wﬁﬂ?r:'gfggp
selection victim selection e

])
u Sequential ’ u Random ’

v/ Supported in DAPHNE

* Self-scheduling as a principle for work self-assignment.
(Not to be confused with the self-scheduling method that partitions and self-assigns work). 18

Easily Extensible (a la DAPHNE)

* DaphneSched open and easily extensible via

* New work partitioning schemes, e.g., MYTECH

e enum SelfSchedulingScheme
e uint64_t getNextChunk()
* opt<SelfSchedulingScheme> taskPartitioningScheme

* Customize existing work assignment schemes
(mainly work-stealing)

* Victim selection: --SEQ, --SEQPRI, --RANDOM, --RANDOMPRI

* Work stealing ratio: --SS, --GSS, --TSS, --FAC2, --TFSS, --FISS,
--VISS, --PLS, --MSTATIC, --MFSC, --PSS, --MYTECH

+"¢« DAPHNE

New work partitioning
via changes to three functions

Custom work assignment
via two knobs

https://github.com/daphne-eu/daphne/blob/main/doc/SchedulingOptions.md

Presentation Overview +*¢« DAPHNE

Results

20

DaphneSched of a Data Analysis Pipeline

Parallel
Execution
Time
(seconds)

15

14

134

10+

Connected Components Algorithm

~ 16% improvement —
Default
v ~9% imp 'ovemer]
Naive
1T
L T l v Best
— ~10.4s
R = = |7
'(/ 'fo ‘o I’L I‘o I‘o I‘o (o ' @ I(J ‘o
S

Work Partitioning Scheme

+"¢« DAPHNE

Centralized Work Queue
(Self-scheduling)

WorkerCPU
TaskQueue

WorkerCPU

WorkerCPU

WorkerCPU

Problem size: 403’394 * 50 vertices
Processor type: Intel Xeon E5-2640,

64 GB RAM, 2.4 GHz CPU

Hardware parallelism: 2 CPUs x 10 cores
Software parallelism: 20 threads (no

hyperthreading) 21

DaphneSched of a Data Analysis Pipeline +*« DAPHNE

_ Multiple Work Queues
Connected Components Algorithm (per CPU socket)
WorkerCPU TaskQueue
23% improvement WorkerCPU 7
WorkerCPU
> TaskQueue
Work Assignment (work stealing with victim selection) WorkerCPU
STATIC GSS TSS FAC2 TFSS FISS VISS PLS MSTATIC MFSC PSS
SEQ 12.34 11.12 10.96 11.27 11.03 11.25 11.75 10.23 11.59 10.42 11.3
SEQPR| 11.52 12.16 11.47 11.02 10.52 11.61 11.44 10.95 11.7 N 10.36 11.48
RANDOM 11.89 10.21 10.3 10.09 10.61 10.37 11.12 10.95 10.05 | 9.27 | 10.08
RANDOMPRI 11.42 11.26 11.51 10.26 10.67 10.37 11.81 1057 10.12 1.1 11.58
Parallel E ion Ti d L Best ~9.3s
| arallel Execution Time (seconds) 1 Work Partitioning Scheme Vs ~10.4
93 16.9 (same scheme)

Problem size: 403’394 * 50 vertices
Processor type: Intel Xeon E5-2640,

64 GB RAM, 2.4 GHz CPU

Hardware parallelism: 2 CPUs x 10 cores
Software parallelism: 20 threads (no

hyperthreading) 29

Presentation Overview +*¢« DAPHNE

Next Steps

23

+"¢ DAPHNE

Distributed DAPHNE Research on new scheduling
Runtime: MLS incubation (in approaches (data-vs. task-
progress) driven)
Next Steps

Deploy hierarchical

scheduling (local and Research on multi-tenancy
distributed runtimes) with for multiple IDA pipelines
automated algorithm across heterogeneous devices

selection per level

+"¢ DAPHNE

Multilevel Scheduling is key Separation of responsibilities
for exploiting massive, and Coordination reduce
multilevel, heterogeneous synchronization overhead
parallelism and resource idleness
Takeaways
DaphneSched incubates MLS DAPHNE integrates
and offers wide-range data analysis pipelines,
Coverage and easy increasing their performance

Extensibility and user productivity

X ,
X< University

/XN of Basel

Department of DA P H N E
Mathematics and Computer Science

Multilevel Scheduling in Action

for Data Analysis Pipelines with DAPHNE

Florina M. Ciorba

Department of Mathematics and Computer Science
University of Basel
ITU Resource-Aware Data Science Day, February 13, 2023

Joint work with Ahmed Eleliemy

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 957407

