
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 957407.

Multilevel Scheduling in Action

for Data Analysis Pipelines with DAPHNE
Florina M. Ciorba
Department of Mathematics and Computer Science
University of Basel
ITU Resource-Aware Data Science Day, February 13, 2023

Joint work with Ahmed Eleliemy

Presentation Overview

• Multilevel Scheduling

• DAPHNE

• Results

• Next Steps

2

Presenta.on Overview

• Mul$level Scheduling

• DAPHNE

• Results

• Next Steps

3

Multilevel Parallelism

4

 Macroscopic Scale
 Space: O(mm3→km3)

Time: O(s→h)

 Mesoscopic Scale
 Space: O(0.1→10mm3)

Time: O(ms)

 Microscopic Scale
 Space: O(0.1→15µm3)

Time: O(ns)

Atomistic Scale
 Space: O(1→300nm3)

Time: O(0→1ps)

Electronic Scale
Space: O(2→10 Å3)

Time: O(0→1fs)

Multiscale Modeling

Local
Partitions

O(10-1) EFLOP/sRpeak O(1) EFLOP/s O(10-1) EFLOP/s
O(106) nodesHwParallelism

GPUs
O(106) nodes

Other coprocsPartition Type
O(106) nodes

CPUs

Nodes / Cards

O(104) GFLOP/sRpeak O(104) GFLOP/s O(104) GFLOP/s
O(10) cardsHwParallelism

GPUs
O(10) sockets

Other coprocsNode Type
O(10) cards

CPUs

Chips / Sockets

O(102) TFLOP/sRpeak O(102) TFLOP/s O(102) TFLOP/s
O(102-104) coresHwParallelism

GPUs
O(102) cores

Other coprocsCore Type
O(102-104) cores

CPUs

Cores

O(104) instr./sRpeak O(109) instr./s O(104) instr./s
O(104) vect. unitsHwParallelism

GPUs
O(4-8) vect. units

Other coprocsVector Type
O(104) vect. units

CPUs

Vectors

O(16-256) instr./sRpeak O(2-4) instr./s O(16-256) instr./s
O(16-256) data itemsHwParallelism

GPUs
O(2-4) data items

Other coprocsVector Type
O(16-256) data items

CPUs

Pipelines

Rpeak O(100) instructions/ns
HwParallelism O(10) instructions

Multithreaded
O(100) instructions

Single Threaded

O(10) instructions/ns

Instructions

Rpeak
HwParallelism

O(5) instructions/ns
O(5) instructions

Local Parallel
Systems

Time
HwParallelism

O(ms-days)
O(3-10) partitions

Global Distributed
Systems

Time
HwParallelism

O(m-days)
O(102-103) sites

Multilevel Hardware Parallelism

Jobs
(Job level parallelism)

(#nodes × #sockets/node × #CPU cores/socket)
SwParallelism O(106) processes

Threads
(Thread level parallelism)

SwParallelism O(104) vect. instr.
GPUsCPUs Other coprocs

O(104) vect. instr.O(4-8) vect. instr.
Instr. Type

Scalar Instructions
(Instruction level parallelism)

SwParallelism O(5) instructions

Vectorizable
Instructions

(Instruction level parallelism)

O(5) instructionsSwParallelism

Global Distributed
Batches

(Batch level parallelism)

SwParallelism O(102) local batches

Local Parallel
Batches

(Batch level parallelism)

(#partition types × #partitions × #node types × #nodes)
O(106-107) jobsSwParallelism

Processes
(Process level parallelism)

CPU GPU

O(103-104) threads

Thread Type

O(103-104) threads

Other coproc

SwParallelism O(105) threads

Multilevel Software Parallelism

Performance requires complex
interplay of

Massive
Multilevel

Heterogeneous
Hardware and Software

Parallelism

How to use it all to solve the world’s
most challenging problems?

Mul5level Scheduling

Macroscopic scale
⬆

Mesoscopic scale
⬇

Microscopic scale

Multilevel Parallelism

5

 Macroscopic Scale
 Space: O(mm3→km3)

Time: O(s→h)

 Mesoscopic Scale
 Space: O(0.1→10mm3)

Time: O(ms)

 Microscopic Scale
 Space: O(0.1→15µm3)

Time: O(ns)

Atomistic Scale
 Space: O(1→300nm3)

Time: O(0→1ps)

Electronic Scale
Space: O(2→10 Å3)

Time: O(0→1fs)

Multiscale Modeling

Local
Partitions

O(10-1) EFLOP/sRpeak O(1) EFLOP/s O(10-1) EFLOP/s
O(106) nodesHwParallelism

GPUs
O(106) nodes

Other coprocsPartition Type
O(106) nodes

CPUs

Nodes / Cards

O(104) GFLOP/sRpeak O(104) GFLOP/s O(104) GFLOP/s
O(10) cardsHwParallelism

GPUs
O(10) sockets

Other coprocsNode Type
O(10) cards

CPUs

Chips / Sockets

O(102) TFLOP/sRpeak O(102) TFLOP/s O(102) TFLOP/s
O(102-104) coresHwParallelism

GPUs
O(102) cores

Other coprocsCore Type
O(102-104) cores

CPUs

Cores

O(104) instr./sRpeak O(109) instr./s O(104) instr./s
O(104) vect. unitsHwParallelism

GPUs
O(4-8) vect. units

Other coprocsVector Type
O(104) vect. units

CPUs

Vectors

O(16-256) instr./sRpeak O(2-4) instr./s O(16-256) instr./s
O(16-256) data itemsHwParallelism

GPUs
O(2-4) data items

Other coprocsVector Type
O(16-256) data items

CPUs

Pipelines

Rpeak O(100) instructions/ns
HwParallelism O(10) instructions

Multithreaded
O(100) instructions

Single Threaded

O(10) instructions/ns

Instructions

Rpeak
HwParallelism

O(5) instructions/ns
O(5) instructions

Local Parallel
Systems

Time
HwParallelism

O(ms-days)
O(3-10) partitions

Global Distributed
Systems

Time
HwParallelism

O(m-days)
O(102-103) sites

Multilevel Hardware Parallelism

Jobs
(Job level parallelism)

(#nodes × #sockets/node × #CPU cores/socket)
SwParallelism O(106) processes

Threads
(Thread level parallelism)

SwParallelism O(104) vect. instr.
GPUsCPUs Other coprocs

O(104) vect. instr.O(4-8) vect. instr.
Instr. Type

Scalar Instructions
(Instruction level parallelism)

SwParallelism O(5) instructions

Vectorizable
Instructions

(Instruction level parallelism)

O(5) instructionsSwParallelism

Global Distributed
Batches

(Batch level parallelism)

SwParallelism O(102) local batches

Local Parallel
Batches

(Batch level parallelism)

(#partition types × #partitions × #node types × #nodes)
O(106-107) jobsSwParallelism

Processes
(Process level parallelism)

CPU GPU

O(103-104) threads

Thread Type

O(103-104) threads

Other coproc

SwParallelism O(105) threads

Multilevel Software Parallelism

Mul.level Scheduling

6

Operating
System

Application

Batch

Core
Node

Cluste
r

Le
ve

ls
of

 s
of

tw
ar

e
pa

ra
lle

lis
m

Levels of hardware parallelism

OS
Thread OS

level scheduling

Process
level scheduling

Application
Process/Thread

Ap
pli

ca
tio

n
lev

el
sc

he
du

lin
g

Thread
level scheduling

Multilevel scheduling (MLS)

Batch
level scheduling

Job Multilevel Scheduling
exploits massive,

multilevel,
heterogeneous

parallelism.

Requires Coordination
to expose and exchange

information across levels:
• idle resources

• remaining work

Multilevel Scheduling in Large Scale High Performance Computers, Florina M. Ciorba, https://hpc.dmi.unibas.ch/en/research/mls/

List Scheduling Algorithms: FCFS, SJF, LSF, EDF, etc.
Schedulers: SLURM, Mesos, Torque, Borg, Omega, etc.

Self-Scheduling Algorithms: SS, FSC, FISS,
VISS, GSS, TSS, FAC, WF, AWF, BOLD, etc.
Libraries: LB4OMP, LB4MPI
Algorithm selection: Expert, RL-based

https://hpc.dmi.unibas.ch/en/research/mls/

Interference Between
Batch and Applica2on Level Scheduling

7

Horizontal zoom Zoom window
415 to 550 seconds

J3

J1
J4

J5

J6

J7

System makespan

J7
J9

J10

J11

11,020.00 seconds

J8

Horizontal zoom Zoom window
from 415 to 550

J3

J1

J4

J5

J6

JOB7

J10

9,607.00 seconds

J7

J8

J9

J10

J11

System makespan

Applica'on load
imbalance causes
system load imbalance

Effective System Performance (ESP): Mandelbrot
Jobs: 230
Requested hosts by each job: 2-256
Batch scheduling: FCFS+BF (SLURM simulation)
Application scheduling: STATIC (SimGrid simulation)

System load imbalance:
ready jobs wait while
free resources exist

Need to reduce idleness
Can applications relinquish the resources

that are no longer needed (no more work)?

Horizontal zoom Zoom window
from 415 to 550

J3

J1

J4

J5

J6

JOB7

J10

9,607.00 seconds

J7

J8

J9

J10

J11

System makespan

Mul2level Scheduling (MLS) to Reduce Idleness

8

App4Job queue App5 …

#Requested
resources 4 8

App1

R1 R2

R3 R4

App2 App3

R5 R6 R7 R8

R9 R10

Sy
st

em
 re

so
ur

ce
s

RJMS

Unallocated
resources

Work
request

Work
assignment

Batch Level Scheduling

Application Level Scheduling

Work
request

Work
assignment

Work
request

Work
assignment

R4 is
free

R7 is
free

A. Eleliemy and F. M. Ciorba. “A Resourceful CoordinaEon Approach for MulElevel Scheduling”.
InternaEonal Conference on High Performance CompuEng & SimulaEon (HPCS 2020)

Relinquished resource

Relinquished resource

Resourceful Coordination Approach (RCA)

Reduced idleness by application
relinquishing no longer needed resources.

(previously 11,020 seconds)13% improvement

Interference Between
Application Process and Thread Level Scheduling

9

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Start End

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4
Thread 5

Thread 6

Thread 7

Process 1

Process 2

Inter-process
load imbalance
MPI runtime

Intra-process
(thread-level) load imbalance
OpenMP run.me

Master (process/thread) partitions and assigns work upon workers’ request.
Workers only request, wait for, and execute received work.

Master is a bottleneck and induces waiting and idleness.

WaiEng thread
(Implicit synchronizaEon) ComputaEonWaiEng process

(explicit synchronizaEon) Idle resource

System load imbalanceApplication execution

Need to reduce wai5ng
Can work parFFoning be separate from assignment?

Bottleneck icon by Stephen Plaster from thenounproject.com

Reduced wai5ng by eliminaFng master
and establishing worker cooperaFon.

Mul2level Scheduling (MLS) to Reduce Wai2ng

• Workers help out master by separa1ng work par11oning and work assignment
• Workers (threads or processes) self-par))on work (Ki), then self-assign it (ith chunk)
• Implementa8on: atomic opera8ons (threads) or RMA get-put opera8ons (processes)

• Master ensures atomic updates on “i” (threads) or maintains RMA window (processes)

10
A. Eleliemy and F. M. Ciorba. “A Distributed Chunk Calculation Approach for Self-scheduling of
Parallel Applications on Distributed-memory Systems”. Int. J. of Computational Science, 2021.

Centralized chunk calculation approach (CCA)

𝐾!
"#$$ = 𝐾!%&

"#$$ + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐾!
'"#$$ = 𝐾("#$$ + 𝑖 ∗ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

ComputaEonWaiEng worker
(explicit synchronizaEon) Idle resource

W0
W1
W2
W3
W4
W5
W6
W7

Application executionStart End

Recursive
(difficult to parallelize)

Not recursive
(easy to parallelize)

Distributed chunk calcula'on approach (DCA)

Presenta.on Overview

• Mul9level Scheduling

• DAPHNE

• Results

• Next Steps

11

Data Analysis Pipelines

HPC code
Scientific simulations

Data preprocessing
code

Machine learning code
Training ML model

Parallel environments
MathemaEcal libraries

MPI/OpenMP/BLAS/MKL

ML frameworks
PyTorch/TensorFlow

Data processing frameworks
Spark/Flink

Resource allocation and management
Slurm/Mesos

Application

Middleware

Cluster
Management

Compute node

CPUs GPUs FPGA TPUs VPUs

Local storage High spend network
interface

Compute node

CPUs GPUs FPGA TPUs VPUs

Local storage High speed network interface

Hardware
infrastructure

ComputaEonal
Storage
System

High speed
interconnecEon

network

ComputaEon Data processing Training

N. Ihde et al. “A Survey of Big Data, HPC and Machine Learning Benchmarks”. TPCTC 2021, Copenhagen, Denmark, August 2021. Open Access here.

• Pipelines: data management, query processing, high performance compu6ng, complex simula6ons, training and
scoring for mul6ple machine learning models

• Integra'on: increasingly common, sharing compila6on, run6me techniques, and converging cluster hardware

How to efficiently schedule
Integrated Data Analysis Pipelines?

Aka how to exploit massive,
multilevel, heterogeneous parallelism?

12

https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/publications/2021/A_Survey_of_Big_Data_High_Performance_Computing_and_Machine_Learning_Benchmarks.pdf

DAPHNE: An Open and Extensible System
Infrastructure for Integrated Data Analysis Pipelines

Goal
Integrate data analysis

pipelines to increase
producFvity and eliminate

unnecessary overheads.

Opportunities for scheduling

P. Damme et al. DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines. CIDR ’22. Open Access here. https://github.com/daphne-eu/daphne 13

https://www.researchgate.net/publication/357578796_DAPHNE_An_Open_and_Extensible_System_Infrastructure_for_Integrated_Data_Analysis_Pipelines
https://github.com/daphne-eu/daphne

DaphneSched

A. Eleliemy and F. M. Ciorba. “DaphneSched: Scheduler for Integrated Data Analysis Pipelines”. In prepara(on, 2023.

Four Design Principles

First two incubate mulFlevel
scheduling of threads,

processes, pipelines across
cores, sockets, devices, nodes

Last two driven by the
DAPHNE philosophy

14

Separation of Responsibilities (à la MLS)

15

1. Work
Partitioning

2. Work
Assignment

3. Ordering 4. Timing
Compiler

iden6fies
and organizes
dependencies

Run6me
system

for workers

Runtime
system
to workers

Runtime
system
deploys
work onto
devices

Data parallelism
Same operator, multiple data

Functional parallelism
Different operators, multiple data

task = operators on data (smallest work unit)

Reduce waiting
Compiler and runtime system
have separate responsibilities

Coordina.on (à la MLS)

16System compuPng resources

Computing resources
allocated to DAPHNE

IDA Pipeline 2

Pipelines Collocation

IDA Pipeline 1 Reduce idleness via

Resource relinquishing
DaphneSched relinquishes resources no longer needed by

IDA pipeline 1 to DAPHNE RT

followed by

Collocation
DAPHNE RT collocates IDA pipeline 2 on resources just

relinquished by DaphneSched from IDA Pipeline 1

Relinquished resources

Wide Range Coverage (à la DAPHNE)

17

Partitioning
schemes*

Nonadaptive

Without
profiling

Fixed
chunk size

SS, mFSC
mSTATIC

Variable
chunk size

Increasing

FISS,
VISS

Decreasing

GSS, FAC2,
TSS, TFSS,

WF2

Random

RND

Profiling based

Fixed
chunk size

FSC

Variable
chunk size

Decreasing

FAC, BOLD,
PLS, PSS

Adaptive

Decreasing
chunk size

AWF, AWF-B,
C, D, E

Variable

AF

Automatic
Selection

Scheduling
Algorithm

Exhaustive Random Expert RL

Chunk
parameter

Expert RL

Supported in DAPHNE [Ongoing Work] in DAPHNE

* Work partitioning uses the chunk calculation formulae of the various Dynamic Loop Self-Scheduling schemes

Benefits Scheduling Research
by offering a fair tesFng and comparison

environment for various schemes

Wide Range Coverage (à la DAPHNE)

18

Per core
Per CPU
Per device
Per node

Victim selection strategies

Work
Queues

Single

Self-scheduling*

Multiple

Work-stealing

Sequential victim
selection

Random
victim selection

Prioritized
within group

victim selection

Sequential Random

* Self-scheduling as a principle for work self-assignment.
(Not to be confused with the self-scheduling method that partitions and self-assigns work).

Supported in DAPHNE

Benefits Adaptive Resource Management
by offering a configurable deployment

environment for various device configurations

Easily Extensible (à la DAPHNE)

• DaphneSched open and easily extensible via

• New work par11oning schemes, e.g., MYTECH
• enum SelfSchedulingScheme
• uint64_t getNextChunk()
• opt<SelfSchedulingScheme> taskPar88oningScheme

• Customize exis?ng work assignment schemes
(mainly work-stealing)
• Vic8m selec8on: --SEQ, --SEQPRI, --RANDOM, --RANDOMPRI
• Work stealing ra8o: --SS, --GSS, --TSS, --FAC2, --TFSS, --FISS,

--VISS, --PLS, --MSTATIC, --MFSC, --PSS, --MYTECH

19
https://github.com/daphne-eu/daphne/blob/main/doc/SchedulingOptions.md

New work partitioning
via changes to three functions

Custom work assignment
via two knobs

https://github.com/daphne-eu/daphne/blob/main/doc/SchedulingOptions.md

Presentation Overview

• Mul9level Scheduling

• DAPHNE

• Results

• Next Steps

20

DaphneSched of a Data Analysis Pipeline

21

Centralized Work Queue
(Self-scheduling)

Parallel
Execution
Time
(seconds)

Work Partitioning Scheme

Default

Naive

Best
~10.4s

~ 16% improvement

~ 9% improvement

WorkerCPU
TaskQueue

WorkerCPU

WorkerCPU

WorkerCPU

Connected Components Algorithm

Problem size: 403’394 * 50 vertices
Processor type: Intel Xeon E5-2640,
64 GB RAM, 2.4 GHz CPU
Hardware parallelism: 2 CPUs x 10 cores
Software parallelism: 20 threads (no
hyperthreading)

22

Work Partitioning Scheme

Work Assignment (work stealing with victim selection)

TaskQueue

TaskQueue

WorkerCPU

WorkerCPU

WorkerCPU

WorkerCPU

23% improvement

DaphneSched of a Data Analysis Pipeline

Parallel Execution Time (seconds)

16.99.3

Problem size: 403’394 * 50 vertices
Processor type: Intel Xeon E5-2640,
64 GB RAM, 2.4 GHz CPU
Hardware parallelism: 2 CPUs x 10 cores
Software parallelism: 20 threads (no
hyperthreading)

Multiple Work Queues
(per CPU socket)Connected Components Algorithm

Best ~9.3s
vs. ~10.4s
(same scheme)

Presentation Overview

• Multilevel Scheduling

• DAPHNE

• Results

• Next Steps

23

Distributed DAPHNE
Run1me: MLS incuba?on (in
progress)

Research on new scheduling
approaches (data-vs. task-

driven)

Deploy hierarchical
scheduling (local and
distributed run?mes) with
automated algorithm
selec1on per level

Research on mul1-tenancy
for mul?ple IDA pipelines

across heterogeneous devices

Next Steps

24

Multilevel Scheduling is key
for exploiting massive,
multilevel, heterogeneous
parallelism

Separation of responsibilities
and Coordination reduce
synchronization overhead

and resource idleness

DaphneSched incubates MLS
and offers wide-range
Coverage and easy
Extensibility

DAPHNE integrates
data analysis pipelines,

increasing their performance
and user productivity

Takeaways

25

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 957407.

Multilevel Scheduling in Action

for Data Analysis Pipelines with DAPHNE
Florina M. Ciorba
Department of Mathematics and Computer Science
University of Basel
ITU Resource-Aware Data Science Day, February 13, 2023

Joint work with Ahmed Eleliemy

