
Towards Holistic Redundancy Exploitation
for Data-centric ML Pipelines

Matthias Boehm

Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data

Big Data Engineering (DAMS Lab)

Data-centric ML Pipelines

while(!converged) {
… q = X %*% v …

}
X

Model Training Model Scoring

85%
Accuracyy

train() predict()

Hyper-parameter Tuning + CV

Model and Feature Selection

Data Preparation
(e.g., one-hot, bins)

Data Integration & Data Cleaning

Data Programming & Augmentation

FX

Validation & Debugging

Deployment & Scoring

SliceLine
[SIGMOD’21c]

Top-K Cleaning
Pipelines

[under submission]

Hierarchical Composition
as Library Functions

on top of ML systems

Key observation: SotA
data engineering based on ML

Parallel Feature
Transformations

[PVLDB’22]

Alignment of
Multi-modal Data

I/O for Custom
Data Formats

[under submission]

Data Engineering

Apache SystemDS

[SIGMOD’15,’17,’19,’21abc,’23ab]
[PVLDB’14,’16ab,’18,’22]
[ICDE’11,’12,’15]
[CIDR’17,’20]
[VLDBJ’18]
[CIKM’22]
[DEBull’14]
[PPoPP’15] Hadoop or Spark Cluster

(scale-out)
In-Memory Single Node

(scale-up)

Runtime

Compiler

Language

DML Scripts

since 2010/11since 2012 since 2015

APIs: Command line, JMLC,
Spark MLContext, Spark ML,

(20+ Scalable Algorithms)

In-Progress:

GPU

since 2014/16

07/2020 Renamed to SystemDS
05/2017 Apache Top-Level Project
11/2015 Apache Incubator Project
08/2015 Open Source Release

Write Once,
Run Anywhere

Federated
(LA progs, PS)

since 2019

[https://github.com/apache/systemds]

https://github.com/apache/systemds

Redundancy-exploiting Techniques
for data-centric ML Pipelines

• Resource Allocation and Elasticity

• Data Sampling and Composition
(sampling, distillation, augmentation-as-a-kernel, factorization)

• Sparsity Exploitation
(algorithms, op pipelines, data/weights, kernels, HW)

• Lossy and Lossless Compression

• Weight Pruning and Connection Sampling

Isolated Application,
Exploration, and Tuning;
Trial-and-Error Process

[Credit: Ce Zhang]

[Credit: Chris Jermaine]

#1 Resource Elasticity

• Resource Optimizer for ML Workloads
• Optimize ML program resource configurations via online what-if analysis and plan generation

• Minimize cost w/o unnecessary overprovisioning, program-aware enumeration (e.g., mem estimates)

• Deployment
• Initial Compilation

• Dynamic
Recompilation
during Runtime

[SIGMOD’15]

[Botong Huang et al.: Resource
Elasticity for Large-Scale Machine

Learning. SIGMOD 2015]

Data &
Script

#2 Sparsity-exploiting Operator Fusion

• Motivation: DAGs of linear algebra (LA) operations and statistical functions
with materialized intermediates → ubiquitous fusion opportunities

• Examples:
sum(X*Y*Z)

a) Intermediates b) Single-
Pass

t(X)%*%(X%*%v)
→t(t(X%*%v)%*%X)

c) Multi-
Aggregates

d) Sparsity
Exploitation

[Matthias Boehm et al.: On Optimizing
Operator Fusion Plans for Large-Scale Machine

Learning in SystemML. PVLDB 2018]

[PPoPP’15, PVLDB’16b, CIDR’17, PVLDB’18]

NLP Example
(SentenceCNN)

#3 Sparsity Estimation

• Motivation
• Sparse input matrices from NLP, graphs analytics, RecSys, HPC

• Sparse intermediates (transform, dropout), and weights

• Selection/permutation matrices

• Sparsity Estimation

• Assumptions: no cancellation / no NaNs→ Boolean matmult

• Existing estimators: Naïve, Bitset, Sample, Hash, DMap, LGraph

• MNC Sketch (Matrix Non-zero Count)
• Create MNC sketch for inputs A and B

• Exploitation of structural properties
(e.g., 1 non-zero per row, row sparsity)

• Support for matrix expressions
(reorganizations, elementwise ops)

• Sketch propagation and estimation 𝑠𝐶 = Ƹ𝑠𝐶 = ℎ𝐴
𝑐ℎ𝐵

𝑟 /(𝑚𝑙) if max ℎ𝐴
𝑟 ≤ 1 ∨ max ℎ𝐵

𝑐 ≤ 1

[Johanna Sommer et al.: MNC:
Structure-Exploiting Sparsity Estimation

for Matrix Expressions. SIGMOD 2019]
[DEBull’14, SIGMOD’19]

Tradeoff

#4 Multi-level Lineage Tracing & Reuse

• Lineage as Key Enabling Technique
• Trace lineage of ops (incl. non-determinism), dedup for loops/funcs

• Model versioning, data reuse, incr. maintenance, autodiff, debugging

• Full Reuse of Intermediates
• Before executing instruction, probe output lineage in cache
Map<Lineage, MatrixBlock>

• Cost-based/heuristic caching and eviction decisions
(compiler-assisted)

• Partial Reuse of Intermediates
• Problem: Often partial result overlap

• Reuse partial results via dedicated rewrites
(compensation plans)

• Example: steplm

• Next Steps: multi-backend, unified mem mgmt

for(i in 1:numModels)
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

m_steplm = function(...) {
while(continue) {
parfor(i in 1:n) {

if(!fixed[1,i]) {
Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
add best to Xg (AIC)

} }

X

t(X)

m>>n

[CIDR’20, SIGMOD’21]

#5 Compressed Linear Algebra Extended

• Lossless Matrix Compression
• Improved general applicability (adaptive compression time,

new compression schemes, new kernels, intermediates, workload-aware)

• Sparsity → Redundancy exploitation
(data redundancy, structural redundancy)

• Workload-aware Compression

• Workload summary
→ compression

• Compressed Representation
→ execution planning

• Next Steps
• Frame compression, compressed I/O

• Compressed feature transformations

• Morphing of compressed data

[PVLDB’16a, VLDBJ’18, SIGMOD’23a]

Holistic Redundancy Exploitation

• Overall Vision
• Learned multiplexing of redundancy-exploiting techniques (application and parameterization)

• More effective sparsity- and redundancy-exploiting techniques for changing data characteristics

• Robust ML system integration for end-to-end improvements (runtime, memory/energy)

Holistic Redundancy Exploitation, cont.

• Overall Approach
• End-to-end learning of a holistic multiplexing of redundancy-exploiting techniques

• Lossy decisions learned at algorithm level (sampling, sparsification, lossy compression),
combined with lossless sparsity exploitation and compression at systems level

• Multi-objective
Optimization with
Hierarchical Multiplexing

𝑊′ = 𝑎𝑟𝑔 min
𝑊

𝐸𝐷(𝑊) + 𝜆 ⋅ 𝑅(𝑊) +⋯+ 𝜆𝑆 ⋅ 𝛴𝑖=1
𝑛 (𝑊𝑖≠ 0) + 𝜆𝐶 ⋅ |𝑊|

#non-zeros #distinct

while(!convergedOuter) {
X1 = sample(X, ...)
while(!convergedInner) {

X2 = compress(X2, |X|)
… q = X2 %*% w …

}
}

Automatic
Redundancy Exploitation

(foundational advancements
for sparsity/error estimators,

new sparse/compressed
data types and kernels,
workload awareness)

(proxy models
sufficient?)

Conclusions and Q&A

• #1 Data-centric ML Pipelines
• Increasingly complex, composite ML pipelines

• State-of-the-art data engineering methods based on ML

• Partial resource, operational, and data redundancy

• #2 Holistic Redundancy Exploitation (codename LAURYN)
• Learned multiplexing of redundancy-exploiting techniques (application and parameterization)

• More effective sparsity- and redundancy-exploiting techniques for changing data characteristics

• Robust ML system integration for end-to-end improvements (runtime, memory/energy)

• TU Berlin – Big Data Engineering (DAMS Lab)
• #1 Integrated Data Analysis Pipelines (specialized for workload & HW)

• #2 Automatic Data Reorganization (specialized for data characteristics)

• #3 Data Engineering and Model Debugging (specialized for domain)

• #4 Data Platforms, Federated and Cloud Infra (specialized deployment)

➔ Needs appropriate Abstractions and inter-disciplinary Collaborations

Thanks
Optimizing Compiler and
Runtime Infrastructure

https://github.com/apache/systemds
https://github.com/daphne-eu/daphne

https://github.com/apache/systemds
https://github.com/daphne-eu/daphne

	Slide 1: Towards Holistic Redundancy Exploitation for Data-centric ML Pipelines
	Slide 2: Data-centric ML Pipelines
	Slide 3: Apache SystemDS
	Slide 4: Redundancy-exploiting Techniques for data-centric ML Pipelines
	Slide 5: #1 Resource Elasticity
	Slide 6: #2 Sparsity-exploiting Operator Fusion
	Slide 7: #3 Sparsity Estimation
	Slide 8: #4 Multi-level Lineage Tracing & Reuse
	Slide 9: #5 Compressed Linear Algebra Extended
	Slide 10: Holistic Redundancy Exploitation
	Slide 11: Holistic Redundancy Exploitation, cont.
	Slide 12: Conclusions and Q&A

