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Data is the moving force of ML algorithms

… but in many projects the storage decision is an afterthought
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Why create an ML Storage benchmark? 

Data is the moving force of ML algorithms

… but in many projects the storage decision is an afterthought
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Current ML/AI benchmarks

PMLDB
DAWNBench

Many existing ML/AI benchmarks
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Current ML/AI benchmarks

• Focus on end-to-end testing

à hard to isolate value of each component

• Insist on training and inference speed

à tend to simplify storage

à ignore pre-processing

• Expensive accelerators needed to run

• Require extensive entry knowledge PMLDB
DAWNBench

oana.balmau@cs.mcgill.ca 7



Why create an ML Storage benchmark? 

• Help AI/ML researchers and practitioners 
make an informed storage decision

• Understand storage bottlenecks in ML workloads
and propose optimizations
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MLPerf Storage working group
Who are we?

Academia

Storage Vendors

Accelerator
Vendors

End Users

Mix of industry and academia
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Existing benchmarks

Focus on end-to-end testing

Simplified storage setup

Expensive accelerators needed to run

Require extensive entry knowledge

Benchmark Vision

Our work

Focus on storage impact in ML/AI

Realistic storage & pre-processing settings

No accelerator required to run

Minimal AI/ML knowledge required
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Stages of the ML Pipeline

Data cleaning &
pre-processing

Training Inference
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Stages of the ML Pipeline
I/O intensive [1,2] – Our focus

Data cleaning &
pre-processing

Training Inference

[1] Murray et al. tf.data: A Machine Learning Data Processing Framework, VLDB 21.
[2] Zhao et a. Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA 22.

As much as 50% of the Watts can go
into storage and data cleaning [2]

oana.balmau@cs.mcgill.ca 12



Disk Memory CPUs Accelerators
(GPU, TPU)

Storage resources Compute resources

Data Pipeline in ML: Pre-processing

Train 
model
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MLPerf Storage V0.5
MLPerf Storage V0.5

Data cleaning &
pre-processing Training

Focus on storage impact in ML/AI

Realistic storage settings in 

training phase

No accelerator required to run

Minimal AI/ML knowledge 

required
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Disk CPUs Accelerators
(GPU, ASIC)

Storage resources Compute resources

Data pipeline in ML: Training

Cleaned 
dataset

System 
Memory (DRAM)
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Disk CPUs Accelerators
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Disk CPUs Accelerators
(GPU, ASIC)

Storage resources Compute resources

Data pipeline in ML: Training

Train 
model

Cleaned 
dataset

load 

data

Cache 
data

Load data
in batches

Transform 
data

System 
Memory (DRAM)
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MLPerf Storage V0.5 – workloads

Workload Image 
segmentation

Natural language 
processing

Recommender 
Systems

Model Unet3D BERT DLRM

Seed data KiTS19
Set of images

Wikipedia 2020
Text

Criteo Terabyte
Click logs

Framework Pytorch Tensorflow Pytorch

I/O behavior
Random access 
inside many small 
files

Sequential access of 
small subset of files, 
streamed.

Random access inside 
one large file

https://github.com/mlcommons/storage

Preview package

• Single node

• Many simulated accelerators.

• Synthetic datasets generated
from real dataset seed.

• Local storage
23oana.balmau@cs.mcgill.ca
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Experiment setup
• DGX-1 server

• 8 x V100 GPUs, 32GB GPU memory
• 512GB DRAM

• Image segmentation workload:
• Unet3D, Pytorch
• MLPerf Training implementation
• KiTS19 dataset
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Experiment setup
• DGX-1 server

• 8 x V100 GPUs, 32GB GPU memory
• 512GB DRAM

• Image segmentation workload:
• Unet3D, Pytorch
• MLPerf Training implementation
• KiTS19 dataset
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High GPU utilization à
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ß Disk accessed
often

ß Fluctuating GPU 
utilization
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Disk CPUs

Storage resources Compute resources

Data pipeline in MLPerf Storage benchmark

Train 
model

Cleaned 
dataset

load 

data

Cache 
data

Load data
in batches

Transform 
data

Benchmark is built as an extension of DLIO [1]
[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid ‘21. 

Accelerators
(GPU, ASIC)

System 
Memory (DRAM)
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Disk CPUs

Storage resources Compute resources

Data pipeline in MLPerf Storage benchmark

Train 
model

Cleaned 
dataset

load 

data

Cache 
data

Load data
in batches

Transform 
data

Benchmark is built as an extension of DLIO [1]
[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid ‘21. 

Accelerators
(GPU, ASIC)

System 
Memory (DRAM)

ü Realistic storage settings: nothing changes in data pipeline, 
apart from training computation.
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Disk CPUs

Storage resources Compute resources

Data pipeline in MLPerf Storage benchmark

Train 
model

Cleaned 
dataset

load 

data

Cache 
data

Load data
in batches

Transform 
data

Benchmark is built as an extension of DLIO [1]
[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid ‘21. 

Accelerators
(GPU, ASIC)

System 
Memory (DRAM)

ü Simulate multiple accelerators to
increase load on storage.

ü Simulate different accelerator types
by varying amount of sleep
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ü Similar I/O and memory access patterns

ü No GPU activity 
in MLPerf Storage
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Next Steps

Collect processing times for different accelerator types.

Open benchmark for submissions. 
à https://github.com/mlcommons/storage/tree/v0.5-branch

Parallelism

Trace and benchmark ML pre-processing phase.
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Key Takeaways – MLPerf Storage

We appreciate your feedback

Share your thoughts
Email oana.balmau@cs.mcgill.ca

MLPerf Storage is a new benchmark

Realistic storage settings

No accelerators required to run

Follow MLPerf Storage repository for updates:
https://github.com/mlcommons/storage

Get involved  
mlcommons.org/en/get-involved/

Thanks to all working group co-chairs!

Johnu George, 
Nutanix

Curtis Anderson 
Panasas

Huihuo Zheng
Argonne National Labs
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