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What are we still missing?



Why query optimization?
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Apache Wayang
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Apache Wayang
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Decoupling applications from underlying processing platforms

Logical plan
Execution plan

User-defined
Optimised



Apache Wayang
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Decoupling applications from underlying processing platforms

Java Spark Cross-Platform

100 290 414 22

200 587 458 24

Java Spark Cross-Platform
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Cost-based query optimization process
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Cost model tuning is important …
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… but tedious and time-consuming!

It took us 1 month tuning for only 4 tasks!



ML to the rescue
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Learning-based query optimization
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ML models are 
data-hungry
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Naive solution to generate training data
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(1) Manually create THOUSANDS of  
(good and BAD) plans

F1 F2 F3
P1 … … …
P2 … … …
P3 … … …
… … … …

 (2) Extract features for each plan

3s
36s

8s

(3) Execute ALL plans to collect labels (e.g., 
exec time)

F1 F2 F3 L
P1 … … …
P2 … … …
P3 … … …
… … … … …

Time-consuming
Extrapolated cost of 10,000 plans with 1TB input data > 6 months*

*On four-node  
quad-core cluster



Proposed solution to generate training data
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(1) Generate diverse synthetic plans 
based on initial small workload

 (2) Extract features for each plan (3) Execute a small sample of plans and 
forecast the rest

real
estimated

(1) Manually create THOUSANDS of 
(good and BAD) plans

 (2) Extract features for each plan (3) Execute ALL plans to collect labels (e.g., 
exec time)

F1 F2 F3
P1 … … …
P2 … … …
P3 … … …
… … … …

3s
36s

8s
F1 F2 F3 L

P1 … … …
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P3 … … …
… … … … …
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DataFarm: Training data generator for learning-based QO
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DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation – CIDR 2022
Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021: 1865-1878



DataFarm: Training data generator for learning-based QO
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DataFarm: Training data generator for learning-based QO
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Focus on Label Forecaster
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DataFarm: Label Forecaster
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✦ Characterize jobs with 
interpretable features 

✦ Find the smallest set of 
representative jobs to execute 

✦ Predicts the labels and 
uncertainty for the non-executed 
jobs 

✦ Incrementally execute more jobs 
and improve the model

3



GUIDataFarm: Human-in-the-loop data generation

18Github Video demonstration



Learning-based query optimization
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ML model

Typically regression models



Regression: hard to 
get completely right



Effect of regression models errors 
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Ideal
Regression model

Chosen plan based on 
regression model

Real best plan

~ 2x worse execution time



What really 
matters in QO is 
the relative order 
of the plans



Can we leverage 
learning-to-rank 
models?



Learning-to-rank (LTR) in query optimization
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Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization. BTW 2023



Learning-to-rank (LTR) approach
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Emphasises the ranking objective 



Learning-to-rank (LTR) in query optimization
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Now plan enumeration needs to 
consider lists and not pairs



LTR model architecture
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Inspired by FATE [1] and Neo [2]

[1] K. Pfannschmidt et al.: Deep architectures for learning context-
dependent ranking functions. CoRR abs/1803.05796 (2018)] 

[2] R. Markus et al.: Neo: A Learned Query Optimizer. In: PVLDB 12(11) 2019 

Each plan against the rest 
equivalent plans



Featurization
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Query encoding (logical)

Plan encoding (physical)



LTR model architecture
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Implies a listwise comparison of plans



Learning-to-rank (LTR) in query optimization
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Scoring training plans
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11 22 33 44 78

11 22 33 44 23

11 22 33 44 99
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features label

training data

Execution time

✦ Option 1: Use execution time, sort, extract rank 

✦ Information loss on how two plans differ 

✦ Option 2: Devise a score function: given the runtime of a 
plan and a maximum score value, output its score w.r.t. a 
list of plans and their runtimes 

✦ Local linear score function 

✦ Global agglomerative function



Preliminary Results



Experimental setup
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✦ Datasets: TPC-H and JOB 

✦ Queries: 

✦ ~25K execution plans produced by DataFarm [1] 

✦ Baselines:  

✦ DB X (cost-based optimizer) 

✦ Neo [2] 

✦ Bao [3] 

✦ baseline model (pairwise LTR)

Query types 1 Join 2 Joins 3 Joins 4 Joins 5 Joins 6 Joins 7 Joins

Short (< 2s) 8 8 8 8 8 8 8
Medium (>=2s & < 30s) 2 8 8 8 8 8 8

Long (>= 30s) 0 2 4 7 8 8 5

[1] F. Ventura et al: Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021

[2] R. Markus et al.: Neo: A Learned Query Optimizer. PVLDB 12(11) 2019 

[3] R. Markus et al.: Bao: Making Learned Query Optimization Practical. SIGMOD 2021



Performance on TPC-H (1 GB)
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Outperforms baseline models

Matches DBX for short queries

Outperforms DBX for medium and long queries



Learning-based Query Optimization
What are we still missing?

Learning-to-rank methods

Training data generation

Github


