
Learning-based
Query Optimization

Zoi Kaoudi - 13.02.2023

What are we still missing?

Why query optimization?

2

Apache Wayang

3

Ap
pli
ca
tio
ns

Pla
tfo
rm
s

(formerly Rheem)

Decoupling applications from underlying processing platforms

• P
lat

for
m-ag

no
sti

c c
od

e

• S
QL q

ue
rie

s

Apache Wayang

4

Decoupling applications from underlying processing platforms

Logical plan
Execution plan

User-defined
Optimised

Apache Wayang

5

Decoupling applications from underlying processing platforms

Java Spark Cross-Platform

100 290 414 22

200 587 458 24

Java Spark Cross-Platform

�1

Wayang

Cost-based query optimization process

6

Plan
enumeration

Logical plan

Search space

Physical
operators

cost model

Physical/Execution plan

statistics

Query optimizer

Cost model tuning is important …

7

0

200

400

600

800

1000

SGD 
(7.4GB input)

Word2NVec 
(30MB input)

Aggregate 
(200GB input)

CrocoPR 
(2GB input)

220

835

210

392

68

321

15
36

Well-tuned cost model Simply-tuned cost model

R
un

tim
e

(s
ec

)

Using real
cardinalities

… but tedious and time-consuming!

It took us 1 month tuning for only 4 tasks!

ML to the rescue

8

Plan
enumeration

Logical plan

Search space

Physical
operators

Physical/Execution plan

statistics

Query optimizer

ML model

11 22 33 44

cost model

11 22 33 44 2
11 22 33 44 2
11 22 33 44 2
11 22 33 44 2

features label

training data

Learning-based query optimization

9

11 22 33 44 2
11 22 33 44 2
11 22 33 44 2
11 22 33 44 2

features label

training data

ML models are
data-hungry

10010011001001100100110010011001001

10010011001001100100110010011001001

10011011011001100100111010011001001

10010111001001100100110010011001001

Naive solution to generate training data

11

(1) Manually create THOUSANDS of
(good and BAD) plans

F1 F2 F3
P1 … … …
P2 … … …
P3 … … …
… … … …

 (2) Extract features for each plan

3s
36s

8s

(3) Execute ALL plans to collect labels (e.g.,
exec time)

F1 F2 F3 L
P1 … … …
P2 … … …
P3 … … …
… … … … …

Time-consuming
Extrapolated cost of 10,000 plans with 1TB input data > 6 months*

*On four-node
quad-core cluster

Proposed solution to generate training data

12

(1) Generate diverse synthetic plans
based on initial small workload

 (2) Extract features for each plan (3) Execute a small sample of plans and
forecast the rest

real
estimated

(1) Manually create THOUSANDS of
(good and BAD) plans

 (2) Extract features for each plan (3) Execute ALL plans to collect labels (e.g.,
exec time)

F1 F2 F3
P1 … … …
P2 … … …
P3 … … …
… … … …

3s
36s

8s
F1 F2 F3 L

P1 … … …
P2 … … …
P3 … … …
… … … … …

36s

8s
3s3s

DataFarm: Training data generator for learning-based QO

13

2
3

Abstract Plans

Job Instances

Feature
Extractor

Uncertainty
Evaluator

Model
Builder

Forecaster

Label Forecaster

Settings Input Data

Abstract
Plan

Generator Job Execution
Sampler

Input Data
Meta-data

Computing Resources
Job Instances
Meta-data

3s

15s

10s

10s

Jobs Sample +
Real Runtime

Synthetic
Job

Instantiator

Real Workload

Job Instances +
Forecasted Runtime

5s

3s

Executed Job Instances

Non-executed Job Instances Forecasted Runtime

Real Runtime

1

2

3 8

9

5

4a 6b
6a

74b

Selected for execution

If high uncertainty

... s

If low
uncertainty

ML

ML

1 Plan generation Plan instantiation

Label generationData-driven
White-Box

Explainable ML
process

Easy to customise
and debug

DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation – CIDR 2022
Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021: 1865-1878

DataFarm: Training data generator for learning-based QO

14

2
3

Abstract Plans

Job Instances

Feature
Extractor

Uncertainty
Evaluator

Model
Builder

Forecaster

Label Forecaster

Settings Input Data

Abstract
Plan

Generator Job Execution
Sampler

Input Data
Meta-data

Computing Resources
Job Instances
Meta-data

3s

15s

10s

10s

Jobs Sample +
Real Runtime

Synthetic
Job

Instantiator

Real Workload

Job Instances +
Forecasted Runtime

5s

3s

Executed Job Instances

Non-executed Job Instances Forecasted Runtime

Real Runtime

1

2

3 8

9

5

4a 6b
6a

74b

Selected for execution

If high uncertainty

... s

If low
uncertainty

ML

ML

1 Plan generation Plan instantiation

Label generation

Ø
D
at
a
S
in
k

Fi
lte
r

G
ro
up

by

Jo
in

M
ap

P
ar
tit
io
n

R
ed

uc
e

S
or
t-P

ar
tit
io
n

Operatort+1

Data Sink

Data Source

Filter

Group by

Join

Map

Partition

Reduce

Sort-Partition

O
pe

ra
to
r t

1.0

0.17 0.15 0.67

0.09 0.45 0.41 0.05

0.02 0.04 0.27 0.1 0.56

0.06 0.14 0.17 0.51 0.11

0.03 0.03 0.15 0.23 0.45 0.05 0.06 0.01

1.0

0.04 0.14 0.21 0.5 0.11

0.54 0.08 0.23 0.15
0.0

0.2

0.4

0.6

0.8

1.0

P
ro
ba

bi
lit
y

Children Transition Matrix Parent Transition Matrix

Real Workload

✦ Learns real execution patterns

DataFarm: Training data generator for learning-based QO

15

2
3

Abstract Plans

Job Instances

Feature
Extractor

Uncertainty
Evaluator

Model
Builder

Forecaster

Label Forecaster

Settings Input Data

Abstract
Plan

Generator Job Execution
Sampler

Input Data
Meta-data

Computing Resources
Job Instances
Meta-data

3s

15s

10s

10s

Jobs Sample +
Real Runtime

Synthetic
Job

Instantiator

Real Workload

Job Instances +
Forecasted Runtime

5s

3s

Executed Job Instances

Non-executed Job Instances Forecasted Runtime

Real Runtime

1

2

3 8

9

5

4a 6b
6a

74b

Selected for execution

If high uncertainty

... s

If low
uncertainty

ML

ML

1 Plan generation Plan instantiation

Label generation

✦ Learns real execution patterns

✦ Generates new representative plans

Data
source

?

filter

Ø
D
at
a
S
in
k

Fi
lte
r

G
ro
up

by

Jo
in

M
ap

P
ar
tit
io
n

R
ed

uc
e

S
or
t-P

ar
tit
io
n

Operatort+1

Data Sink

Data Source

Filter

Group by

Join

Map

Partition

Reduce

Sort-Partition

O
pe

ra
to
r t

1.0

0.17 0.15 0.67

0.09 0.45 0.41 0.05

0.02 0.04 0.27 0.1 0.56

0.06 0.14 0.17 0.51 0.11

0.03 0.03 0.15 0.23 0.45 0.05 0.06 0.01

1.0

0.04 0.14 0.21 0.5 0.11

0.54 0.08 0.23 0.15
0.0

0.2

0.4

0.6

0.8

1.0

P
ro
ba

bi
lit
y

Data
sink

…

Focus on Label Forecaster

16

Abstract Plans

Job Instances

Feature
Extractor

Uncertainty
Evaluator

Model
Builder

Forecaster

Label Forecaster

Settings Input Data

Abstract
Plan

Generator Job Execution
Sampler

Input Data
Meta-data

Computing Resources
Job Instances
Meta-data

3s

15s

10s

10s

Jobs Sample +
Real Runtime

Synthetic
Job

Instantiator

Real Workload

Job Instances +
Forecasted Runtime

5s

3s

Executed Job Instances

Non-executed Job Instances Forecasted Runtime

Real Runtime

1

2

3 8

9

5

4a 6b
6a

74b

Selected for execution

If high uncertainty

... s

If low
uncertainty

ML

ML

3

DataFarm: Label Forecaster

17

✦ Characterize jobs with
interpretable features

✦ Find the smallest set of
representative jobs to execute

✦ Predicts the labels and
uncertainty for the non-executed
jobs

✦ Incrementally execute more jobs
and improve the model

3

GUIDataFarm: Human-in-the-loop data generation

18Github Video demonstration

Learning-based query optimization

19

ML model

Typically regression models

Regression: hard to
get completely right

Effect of regression models errors

21

Ideal
Regression model

Chosen plan based on
regression model

Real best plan

~ 2x worse execution time

What really
matters in QO is
the relative order
of the plans

Can we leverage
learning-to-rank
models?

Learning-to-rank (LTR) in query optimization

24

Plan
enumeration

Logical plan

Search space

Physical
operators

Physical/Execution
plan

Query optimizer

LTR model

✦ Questions

✦ Type of LTR

✦ Model architecture and features

✦ Ranking scores from training data

11 22 33 44 2
11 22 33 44 2
11 22 33 44 2
11 22 33 44 2

features label

training data

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization. BTW 2023

Learning-to-rank (LTR) approach

25

Po
in

tw
is

e
Pa

irw
is

e
Li

st
w

is
e

No comparison among items

Too expensive
Assumes pairs are i.i.d

Emphasises the ranking objective

Learning-to-rank (LTR) in query optimization

26

Plan
enumeration

Logical plan

Search space

Physical
operators

Physical/Execution
plan

Query optimizer

LTR model

11 22 33 4411 22 33 4411 22 33 44

11 22 33 4411 22 33 4433 45 22 12

11 22 33 44 2
11 22 33 44 2
11 22 33 44 2
11 22 33 44 2

features label

training data

✦ Questions

✦ Type of LTR

✦ Model architecture and features

✦ Ranking scores from training data

Now plan enumeration needs to
consider lists and not pairs

LTR model architecture

27

Inspired by FATE [1] and Neo [2]

[1] K. Pfannschmidt et al.: Deep architectures for learning context-
dependent ranking functions. CoRR abs/1803.05796 (2018)]

[2] R. Markus et al.: Neo: A Learned Query Optimizer. In: PVLDB 12(11) 2019

Each plan against the rest
equivalent plans

Featurization

28

Query encoding (logical)

Plan encoding (physical)

LTR model architecture

29

Implies a listwise comparison of plans

Learning-to-rank (LTR) in query optimization

30

Plan
enumeration

Logical plan

Search space

Physical
operators

Physical/Execution
plan

Query optimizer

LTR model

11 22 33 4411 22 33 4411 22 33 44

11 22 33 4411 22 33 4433 45 22 12

11 22 33 44 2
11 22 33 44 2
11 22 33 44 2
11 22 33 44 2

features label

training data

✦ Questions

✦ Type of LTR

✦ Model architecture and features

✦ Ranking scores from training data

Scoring training plans

31

11 22 33 44 78

11 22 33 44 23

11 22 33 44 99

11 22 33 44 7

features label

training data

Execution time

✦ Option 1: Use execution time, sort, extract rank

✦ Information loss on how two plans differ

✦ Option 2: Devise a score function: given the runtime of a
plan and a maximum score value, output its score w.r.t. a
list of plans and their runtimes

✦ Local linear score function

✦ Global agglomerative function

Preliminary Results

Experimental setup

33

✦ Datasets: TPC-H and JOB

✦ Queries:

✦ ~25K execution plans produced by DataFarm [1]

✦ Baselines:

✦ DB X (cost-based optimizer)

✦ Neo [2]

✦ Bao [3]

✦ baseline model (pairwise LTR)

Query types 1 Join 2 Joins 3 Joins 4 Joins 5 Joins 6 Joins 7 Joins

Short (< 2s) 8 8 8 8 8 8 8
Medium (>=2s & < 30s) 2 8 8 8 8 8 8

Long (>= 30s) 0 2 4 7 8 8 5

[1] F. Ventura et al: Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021

[2] R. Markus et al.: Neo: A Learned Query Optimizer. PVLDB 12(11) 2019

[3] R. Markus et al.: Bao: Making Learned Query Optimization Practical. SIGMOD 2021

Performance on TPC-H (1 GB)

34

Outperforms baseline models

Matches DBX for short queries

Outperforms DBX for medium and long queries

Learning-based Query Optimization
What are we still missing?

Learning-to-rank methods

Training data generation

Github

