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ABSTRACT
Evaluating hardware for deep learning is challenging. The models
can take days or more to run, the datasets are generally larger than
what fits into memory, and the models are sensitive to interference.
Scaling this up to a large amount of experiments and keeping track
of both software and hardware metrics thus poses real difficulties as
these problems are exacerbated by sheer experimental data volume.
This paper explores some of the data management and exploration
difficulties when working on machine learning systems research.
We introduce our solution in the form of an open-source framework
built on top of a machine learning lifecycle platform. Additionally,
we introduce a web environment for visualizing and exploring
experimental data.
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1 INTRODUCTION
Deep learning has become a staple in data science. Large deep
learning models provide state-of-the-art functionality solving many
problems not solvable by conventional algorithms [1, 2, 3]. Models
need to be trained before being deployed in production. This train-
ing is an expensive iterative process in which the model iterates
over a dataset multiple times. The growth in deep learning has
been paired with an exponential growth in model and dataset size.
More powerful and optimized hardware is required to facilitate the
training of such models. This, in addition to the increase in train-
ing times, has inflated the resource requirements of deep learning
training to a level where it can no longer be ignored.

GPUs are the de facto commodity hardware for meeting the
resource requirements of deep learning. Today’s GPUs are signif-
icantly more powerful than those of ten years ago. In order to
improve the utilization of hardware resources it is paramount that
we use GPUs to their maximum potential. This requires tuning the
training process to properly fit the hardware. On the other hand, a
problem may not have a large enough dataset to warrant a large
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model, or the ideal training setup for a model might not be able to
utilize all of the GPU resources [4, 5, 6]. This poses an issue when
training neural networks as this process usually takes exclusive ac-
cess to a GPU. This may lead to resource wastage as the model may
not be large enough to saturate the GPU. As the scale of the hard-
ware increases, underutilization of hardware resources becomes
a serious consideration for data scientists training deep learning
models. All these issues underline the need for performing system-
atic experiments that evaluate the impact of certain configurations
on deep learning training and hardware utilization.

In the machine learning training space there has been consider-
able work to provide insights into the training process. Techniques
to improve model selection are focused on e.g. model accuracy
instead of hardware utilization [7]. Platforms such as WandB [8]
and MLFlow [9] provide extensive tracking and management func-
tionality, but their hardware monitoring is limited. MLOps tools
like Polyaxon [10] and Kubeflow [11] provide a solution for deploy-
ing training tasks on clusters and may log hardware metrics if the
user wants them to, but are not specifically designed for keeping
and exploring detailed benchmarking data with hardware metrics.
Umlaut [12] provides accessible and flexible metric collection, but
does not offer GPU metrics. Finally, automated machine learning
offers a variety of exploration tools [13, 14], though again focusing
on model accuracy.

In this paper, our goal is to build and demonstrate a framework
that aids data scientists and machine learning systems researchers
when performing systematic experiments that also takes hardware
into account.We have identified six requirements and challenges for
such a framework. Firstly, in order to provide a rigorous analysis of
model training performance, a large amount of configurations has
to be examined. This requires a large system and is made more chal-
lenging by the time required for training a single workload. Even
when using the aggressive limiting measure of capping training to 5
epochs (training iterations) will not guarantee that workloads take
less than a day to train. Secondly, a combination of software and
hardware metrics, such as training accuracy and power consump-
tion, have to continuously be collected during this training process.
This requires both integration with the training script and a variety
of hardware profiling and monitoring tools. Thirdly, the data, in
the form of time series, quickly grows as training goes on. This
results in gigabytes of numeric data which then needs to be sifted
through using a flexible yet efficient process. Fourthly, multiple
different data sources must be compared with each other, yielding
a range of different data visualization use cases. Fifthly, most of the
data timeline may be inconsequential and repetitive, and interest-
ing parts must be identified and investigated. Lastly, the solution
needs to be as convenient to use as possible. Training a model via
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Figure 1: Dataflow architecture of our solution.

the framework should only impose minimal code intrusion and
exploring results should be self-explanatory.

This paper presents our framework, which allows for benchmark-
ing and visualizing deep learning model training in a reproducible
manner. Our design takes the novel approach of repurposing the
well-establishedmachine learning lifecycle platformMLFlow [9] for
machine learning systems analysis. Our extensions transform the
platform to reach all of our aforementioned requirements in both
back- and front-end while ensuring compatibility with pre-existing
workflows and models. We describe how multiple combinations
of models and datasets can be evaluated, in both isolated and col-
located manner. Additionally, we show that there is support for
different machine learning environments, and how existing models
can be easily retrofitted to be supported by our framework. Re-
searchers in our lab have extensively used our framework using a
combination of datasets and machine learning models representa-
tive of a variety of deep learning workloads. Lastly, we delve into
the visualization front-end and illustrate some of the results from
our test runs. The framework is publicly available on GitHub1.

Figure 2: Data collection framework architecture. Experi-
ments consist of workloads that can contain one or multiple
model runs.

1https://github.com/Resource-Aware-Data-systems-RAD/dl-training-viz

2 FRAMEWORK
Our framework is split into a back-end and a front-end. Our data
lifecycle extends that of MLFlow in order to meet our requirements.
We illustrate the data architecture in Figure 1. Model training hap-
pens as an MLFlow client. This client sends data to the MLFlow
server whenever there is a metric to report. The data flow between
the client and server contains many events every second due to the
large quantity of supported hardware metrics. This connection is
frequent for all run-level listeners. Within MLFlow we distinguish
the storage of relational data (experiment setup data, collected hard-
ware monitoring metrics, etc.) and the storage of artifacts (stdout
logs, profiling tool traces, etc.).

For our general data storage we need a solution that can serve
data collection, MLFlow, and our front-end quickly and reliably;
the first and last of which are particularly susceptible to perfor-
mance bottlenecks. Data collection happens continuously through-
out model training and requires storage to be available at all times.
Data exploration requires sifting through a large amount of data
quickly, presenting considerable throughput and responsiveness
requirements for the front-end.

We found that hosting the relational data in a separate Post-
greSQL database yields the best results. While MLFlow defaults
to local data file storage, we have found this to scale poorly with
respect to data size and be unreliable. Furthermore, file storage
requires data access to happen through MLFlow, which inhibited
the performance of our front-end. We store artifacts in S3 storage
on a different server, again forgoing the native file storage. We
host our React front-end on a separate server that connects to the
database via PostgREST, which is an automatic REST API exten-
sion to PostgreSQL databases. We host this REST API on the same
server as the database, though it may be more beneficial to run
these on separate servers to improve scalability. Similarly, larger
setups may benefit from two copies of the database, where one is
to write metrics to and the other is for the front-end to read from.
This would remove any interference during the training process
where metrics are repeatedly written to the database.

3 BACK-END
Figure 2 illustrates the hierarchy presented to the user. Following
the structure of MLFlow, individually trained models are called
runs and are organized in experiments. We introduce a new layer
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Figure 3: Experiment .csv file. Every row corresponds to a
model training.

in-between runs and experiments called workloads. This is required
as we include testing of multiple models at the same time as a
requirement to test impact of workload collocation. A workload
consists of one or more model runs, and a collection of workloads
form an experiment. We will now go over the concepts introduced
in the back-end pipeline, including the scheduler, environments,
collocation, and listeners.

3.1 Scheduling
The execution of training experiments is managed by the workload
scheduler. Models can be trained individually by use of a command
line interface or be structured into experiment files. These are CSV
files that can be edited in any text editor as shown in Figure 3.
Every row is a single to-be-trained model. Models can be trained
in a collocated fashion by sharing a workload ID. The numbering
system of workloads is up to the user. In our case we opt to use
three digits for workload identification. All models in a workload
are trained concurrently. When model training terminates, either
due to success or failure, the row is tagged as such. Once all the
model training jobs terminate, the next workload is started. This
repeats until all rows have been executed. Rows list all parameters
required for training the model with the framework. In particular,
the params field specifies any pass-through parameters that are
sent directly to the model training script.

3.2 Environments
MLFlow as a platform allows machine learning researchers to train
and store their models in a controlled fashion. We leverage their
environments feature to ensure that our training is reproducible.
Models can be trained in either anaconda environments or docker
containers. We collectively call these the environments supported
by the framework. Whenever a model is added, it is included in
one of these environments. Any deep learning library, such as Ten-
sorflow [15], Tensorflow-Keras [16], or Pytorch [17], is supported
as long as an environment for it is included. This ensures compat-
ibility and reduces the number of abstractions required to adopt
an existing codebase to the framework. Code intrusion is kept to a
minimum for the actual model training code. Achieving the basic
hardware tracking functionalities only requires two lines of code:

1 from mldgpu import MultiLevelDNNGPUBenchmark

2 ...

3 with MultiLevelDNNGPUBenchmark () as run:

4 ...

Support for training the model outside of the framework can be
kept by encapsulating these lines in conditional checks.

3.3 Collocation
Collocation allows for multiple models to be trained simultaneously,
increasing hardware utilization. Multiple models can be trained

on multiple GPUs, but can also share the same GPU. We support
multiple technologies for sharing the same GPU resource:

• MIG, Multi-Instance GPU, is a hardware mechanism for re-
cent Nvidia workstation graphics cards that allows for hard-
ware partitioning of the GPU [18]. This allows for multiple
models to train without interference.

• MPS, Multi-Processing Service, is a software mechanism by
Nvidia for managing collocated processes on GPUs [19].

• Naive refers to simply launching multiple processes to use
the same GPU without any other measures taken.

3.4 Listeners
In addition to the model performance metrics collected by MLFlow
we require a host of hardware metrics to evaluate training perfor-
mance. We introduce a group of additional processes called listeners
that automatically record this information. By default we launch a
full set of listeners to capture both host system and GPU hardware
metrics. This preset can be overwritten by setting the listeners
parameter of the run. Additionally, we provide an interface for
intuitively adding new listeners. The following run-level listeners
are included by default:

• TOP is a tool for recording CPU hardware metrics [20].
• Nvidia-SMI is a tool by Nvidia for recording GPU metrics.
Nvidia-SMI yields GPU-widemetrics such as GPU utilization,
memory usage, and power consumption [21].

• DCGMI, or Data Center GPU Management Interface, is a
Nvidia tool for recording more advanced GPU metrics. Ad-
ditionally, DCGMI supports metric collection under MIG for
individual MIG-partitions [22].

In addition to these run-level listeners we support workload-level
listeners. These collect more detailed information but are signifi-
cantly more likely to impact the performance of the model training.
Nvidia Nsight Systems [23] and Compute [24] in particular can
have a pronounced effect on training performance [25]. Workload-
level listeners are therefore disabled by default, but can be enabled
easily inside the framework.

4 FRONT-END
While MLFlow comes with its own set of data exploration tools,
they do not fulfil many of our research requirements. Firstly, the
tools have not been built around comparing runs to each other
and often provide extremely limited functionality. Secondly, they
are not designed to handle large amounts of data points which
can frequently take over 10 seconds to render a single time series.
Lastly, the concept of a workload is central in our data architecture
but does not exist in the MLFlow workflow.

To address these issues and serve our preferred workflow, we
introduce a novel front-end application layer which consists of
two primary components: an interface for data selection and an
interface for data visualization. Before describing these components
in detail, we will first establish the front-end’s primary use cases
which were identified from dissecting our experimental results:

• Intra-workload, where the models trained within a workload
are to be compared to each other.
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Figure 4: Model runs are organized into workloads and ex-
periments which the user can then explore and visualize.

• Inter-workload, where workloads have to be compared to
each other by taking the aggregate of their contained runs.

• Mixed, where specific runs of different workloads are to be
compared to each other.

Figure 4 depicts the front-end’s data selection interface where
data sources can be browsed in a hierarchical manner. The user first
specifies what experiment to explore, after which the workload and
corresponding runs can be navigated and optionally selected via
checkboxes. As a shortcut, all runs in a workload can be selected by
clicking the workload’s checkbox. Data from multiple workloads
and multiple experiments can be selected at the same time and the
system will automatically decide how to deal with the selected data.
At any time, all currently selected runs are viewable by the user
on the rightmost side of the interface. This section also serves as a
shortcut to remove selected runs instead of having to locate their
checkboxes again.

Figure 5: Using the Highcharts.js library, generated charts
are interactive and responsive, allowing for quick dissection
of the data.

After confirming their data selection, the user is directed to the
second primary component where the data can be visualized. This
interface initially appears blank and simply provides a dropdown
list of the available metrics which can be visualized with the cur-
rently selected runs. Once the user has chosen ametric, the interface
will reload with a corresponding graph for that metric (see Figure 5).
There is no limit to the amount of graphs which can be generated
and the selected runs can be changed between graphs. This allows
for the comparison of different datasets within the same interface.
Visualizations are also fully interactive and support toggling, zoom-
ing, and clipping, as well as exporting to PDF, PNG, or SVG formats.
Finally, an interactive version of any visualization can be shared
via a small file which will re-fetch the data from the server.

5 CONCLUSIONS
We have presented our framework for benchmarking and evaluat-
ing machine learning training. We have identified the challenges
connected to collecting and processing real-time training data in
an efficient and accessible manner. Additionally, we have tackled
the visualization of this data, allowing for efficient and effective
data exploration. We are able to compare data in experiments and
between experiments with a unified interface. In addition to our
own experimental analysis work with collocated workloads [26],
our framework has been actively used in our lab to do experiments
for medical imaging research2. We invite other researchers inter-
ested in both hardware and software metrics to consider it for their
own research pipelines.
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