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ABSTRACT
Standardized benchmarks are crucial to ensure a fair comparison
of performance across systems. While extremely valuable, these
benchmarks all use a setup where the workload is well-defined and
known in advance. Unfortunately, this has led to overly-tuning data
management systems for particular benchmark workloads such as
TPC-H or TPC-C. As a result, benchmarking results frequently do
not reflect the behavior of these systems in many real-world set-
tings since workloads often significantly vary from the “known”
benchmarking workloads. To address this issue, we present surprise
benchmarking , a complementary approach to the current standard-
ized benchmarking where “unknown” queries are exercised during
the evaluation.
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1 INTRODUCTION
Benchmarking is prevalent. The conventional way of bench-
marking data management systems relies on static standardized
benchmarks. The Transaction Processing Performance Council
(TPC) [13] has been standardizing benchmarks covering application
domains such as OLTP and OLAP, amongst many other [3, 12, 16].
Similar efforts also exist for other types of data-intensive systems,
including Linked Data Benchmark Council (LDBC), which targets
graph analytics [1, 8, 15] or the Yahoo Cloud Serving Benchmark
(YCSB) [6] which is quite popular for key-value stores. Furthermore,
there have been many proposals for alternative benchmarks that
serve more particular needs [2, 5, 9–11].
Databases systems are “overtuned” for benchmarks. The goal
of all these existing benchmarks is to provide a fair way to compare
the performance of different systems under expected scenarios [14].
While extremely valuable, these benchmarks all exercise a setup
where the workload is well-defined and known in advance, even if
the workload is defined as ad hoc queries. As such, existing database
systems are often “overtuned” for existing benchmarks such as TPC-
H and TPC-DS, and these benchmarks fall short in reflecting how
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the systems behave when faced with unknown scenarios, which
arise in real-world applications. This oftentimes leads to complaints
about the standardized benchmarks not being representative [17].
Towards a new class of benchmarks.We propose a new direc-
tion called surprise benchmarking to address this issue. Surprise
benchmarking introduces a new benchmarking regime that is very
different from existing benchmarks. It introduces unknown aspects
to evaluate database systems, i.e., elements of surprise. On the one
hand, surprise benchmarks will eliminate the overly-tuned nature
of current standardized benchmarking practices. On the other hand,
they will help to establish a larger set of benchmarks over time
covering a more diverse set of data-intensive applications and their
real-world deployments. However, realizing a surprise benchmark
requires a design that departs from classical benchmarking.
The vision of surprise benchmarking. Surprise benchmarking
comes with two important differences when compared to existing
benchmarks: First, surprise benchmarks need to add an unknown
aspect to a workload. To achieve this goal, in this paper we discuss
a methodology that starts with an existing benchmark (e.g., TPC-H
or any other “static” workload) and then adds surprises of different
categories, which target different scenarios ranging from benign
surprises (which we call on-road surprises) to more malicious sur-
prises, which challenge the database in more extreme scenarios
(which we call wrong-road surprises). Second, to add surprises to
a benchmark, we also need to change the benchmarking proce-
dure: We cannot disclose the full benchmarking workload to the
participants as it is usually done with existing benchmarks, which
come with a data and query generator that make the workload fully
transparent to each participant. As such, we propose a new bench-
marking procedure in which participants only get a representative
subset of the workload that allows database vendors to get a rough
understanding of the basic characteristics. For the actual evalu-
ation, the database performance is examined by an independent
benchmark organizer “secretly”.
Several rounds of surprises. Finally, we argue that surprise bench-
marking should be conducted more like a contest where we estab-
lish periodic (e.g., quarterly or yearly) benchmarking rounds. This
allows us to achieve several goals: (1) We can constantly examine
new “themes” per round. For example, themes can differ in the
general workload class they address (e.g., OLAP, OLTP, key-value,
graph processing) and the specific challenges they add (e.g., UDFs or
recursive queries). (2) Instead of keeping a surprise workload secret
forever, we can release the full workloads of the past rounds, in-
cluding the surprises. As such, surprise benchmarking will act as an
interesting repository of workloads that industry and academia can
use as static workloads that target different database capabilities.
Contributions of this paper. To summarize, the contributions of
this paper are as follows: (1) We define a methodology for surprise
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benchmarking through surprise types and benchmarking procedure
(Sections 2 & 3). (2) We evaluate the effectiveness of our method-
ology through a case study, a first round, that resembles TPC-H
but with surprises from each category. Our results demonstrate
how surprise benchmarking captures system behavior that is hard
to observe with static and pre-defined benchmarks (Section 4). (3)
We identify the challenges of ensuring the longevity of surprise
benchmarking and argue for a community effort based on various
forms of automation in the process (Sections 5 & 6).

2 SURPRISE CATEGORIES
For a surprise benchmark, it is important to add “unknown” ele-
ments to the workloads. We categorize these elements of surprise
into three levels of surprise. We expect each benchmarking round
to have surprises covering each category. However, the manner in
which we mix the surprises, and the percentage of surprise queries
may change from round to round.

2.1 On-road Surprises
This type of surprise represents queries that fall in the broader class
of queries that come naturally with a certain workload (e.g., OLAP).
In other words, these are the queries or scenarios the system was
designed to cover, and they do not intend to “drive” the system
into “uneven” terrain (and hence we call this category “on-road”
surprises). The goal is to observe how the system behavior changes
compared to standardized benchmarking.
Examples. For example, queries similar to, but not the same as, the
TPC-H benchmark queries for a system specifically designed for
OLAP workloads. Our case study shows that these could be queries
that exercise typical OLAP scenarios but use not-so-commonly used
features in TPC-H, such as common table expressions. Similarly,
introducing data skew that mimics real-world data distributions as
the surprise would fall under this category.
Workload generation. As part of this work, we plan to develop
automatic query generation techniques for this class of surprises as
much as possible. In our case study, we use an automated method
to generate such queries based on LLMs.

2.2 Wrong-road Surprises
A typical case in real-world scenarios is that users draft schemas or
queries that are not an “ideal” use of the database. In contrast to the
previous category, this category thus represents scenarios that are
not the intended use of the system under test (i.e., “wrong-road”).
The important fact is that these scenarios still represent common
queries, the user’s intentions are not harmful, and the aim is not to
strain the database. The goal is to observe how the system handles
the performance impact of such misaligned scenarios, and possibly
whether it can correct them.
Examples. Examples for this category are the use of SELECT * or
the use of string-columns in joins as often done by applications.
Other examples are the use of UDFs instead of doing the data
processing with some built-in SQL functions (e.g., use of a UDF
instead of LIKE for text filter); or instead of using JSON support in a
system, casting the data to string and performing regex operations
on the string would be misaligned uses of a database system.

Workload generation.While this class of surprises clearly goes
beyond the intended use of databases, we will still investigate auto-
generation of scenarios for these types of surprises.

2.3 Off-road Surprises
The final surprise category represents scenarios that aim at driving
the database system to the edge by testing “extreme” (i.e., “off-road”)
scenarios. The goal here is to observe the robustness of the systems
under extreme scenarios.
Examples. For example, using extremely long SQL query string,
introducing extreme (unnatural) data skew, or cutting down the
hardware resources by running a heavy stream of collocated queries
would fall under this category.
Workload generation.While some automation is possible, this
category requires the most careful crafting and manual effort.

3 THE BENCHMARKING PROCEDURE
Key idea. The foundation of every benchmark is a comparable
setup across systems. Without this, the obtained results are hard
to interpret meaningfully. As discussed before, for surprise bench-
marking, we use a setup where participating systems are evaluated
“secretly”. For this, we crafted a first benchmarking environment
that showcases how this can be realized. The main idea is that par-
ticipants submit their systems to the benchmarking organization,
which exercises them under a surprise workload.

To realize such a setup, we reuse as much existing infrastruc-
ture as possible. Existing benchmarks and infrastructure are more
likely to be supported by evaluated systems than a custom setup.
In our first iteration, this means we leverage Docker, which allows
participants to submit a pre-configured system to the benchmark
organization and BenchBase [7] as the benchmark driver.

By sharing the full setup (i.e., BenchBase) as well as a representa-
tive workload with the systems to be evaluated before they submit1
their system to be executed under the actual surprise benchmark,
we ensure that all systems can execute the benchmark queries. At
the same time, we take care not to reveal the nature of surprise
in the representative workload to prevent cheating. In the actual
benchmark, we reuse the setup but run surprise queries. Our code
is open-source and available on GitHub.2

BenchBase as a driver. BenchBase [7] (formerly OLTPBench) is a
JDBC-based benchmarking framework written in Java. As many
systems support JDBC directly or are PostgreSQL-compatible, we
can instruct BenchBase to use the necessary drivers. BenchBase
can execute a wide range of standard database benchmarks out of
the box,3 including TPC-H and TPC-C, which we can leverage for
reusability. To specify a benchmark, BenchBase uses XML configu-
ration files containing JDBC connection details and the benchmark
suite to run. It also allows us to specify custom queries to run, which
we use for our surprise queries that are not part of a standard bench-
mark suite. To support custom queries without parameterization,
we slightly modify BenchBase’s query templating.
Benchmark setup. A surprise benchmark requires work from
both the organizers and the participants, which we outline below.
1In our pilot run, we “submitted” PostgreSQL and MonetDB as exemplary systems.
2https://github.com/lawben/surprise-benchmark
317 at the time of writing.
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3.1 Organizer Setup
The majority of the work for a surprise benchmark is on the side of
the benchmark organizers. Currently, this means reliably setting up
infrastructure to execute BenchBase against a system and finding
suitable surprise queries. Our setup is initially oriented towards
single-node databases. This avoids issues such as container-level
networking overheads for server-based DBMS systems such as
PostgreSQL and also allows in-process databases to run as intended.
We note that open challenges and opportunities around different
setups exist (e.g., how to involve cloud databases in our benchmark),
which we discuss in Section 6. For our first test benchmark run (see
Section 4), the setup contained the following steps:
1) Setup Dockerfile. To run all systems in a consistent environ-

ment, we prepare a Dockerfile that builds and installs BenchBase
for the required JDBC driver and copies it to a target image that
contains the system under test. To execute BenchBase, we addi-
tionally need to install a Java runtime in the target image.

2) Copy standard queries.We copy the benchmark suite’s default
queries to the target image in the format that we use for our
surprise queries. This allows participants to test and configure
their system to our setup.

3) Run benchmark queries. Given the test setup with the default
queries, we execute BenchBase as the benchmark driver against
the system. We ensure correct functionality by testing this on
an example system, e.g., PostgreSQL.

4) Hidden surprise queries. Once the basic setup works, we
create a second Dockerfile that copies the surprise queries in
addition to the default ones. This Dockerfile remains hidden
from the participants and is only used for the actual benchmark.

3.2 Participant Setup
The main task of participants is to ensure that their system runs in
our benchmark setup. Thus, we provide the complete setup to the
participants, and just omit the surprise queries. Currently, setting
up a system for our benchmark comprises the following steps:
1) Create Docker image. As we copy BenchBase and our bench-

mark queries into the environment that the system is running
in, we require participants to provide a Docker image contain-
ing their system. This image is used as the base image (FROM in
Dockerfile) for our benchmark.

2) System setup. As each system is started differently, we require
a system setup script. This script should start the system and
return once it is ready.

3) Test default queries. Participants must ensure that our bench-
mark setupworks correctly with the provided default benchmark
suite setup and queries.

4) Submit Docker image. Finally, the participants must submit
their Docker image.

3.3 Benchmark Execution
During benchmark execution, we collect query run times and addi-
tional relevant metrics. Based on the collected data, we calculate the
desired metrics for a leaderboard. Similarly to existing benchmarks,
this does not only have to be query latency but could also contain
other metrics such as the number of query errors or crashes, e.g.,
as shown in our case study in Table 1.

4 CASE STUDY: A FIRST ROUND
In this section, we introduce our initial case study with a twofold
goal: (1) demonstrate the general methodology we proposed for
the benchmark by running concrete example surprises and (2) il-
lustrate initial opportunities that surprise benchmarking presents
for system developers and database researchers alike, to evaluate
the system under new workloads.
Experimental design & setup. The case study uses the bench-
marking methodology as described in Section 2 and Section 3. We
build on the schema, data, and queries from the existing TPC-H
benchmark, which we augment with additional tables and queries
to cover the three surprise categories. Our experiments compare
the query execution latencies of PostgreSQL and MonetDB. These
systems are used only illustratively to show the benchmark design,
not to determine which system is better. We conduct all experi-
ments on a single node with four Intel Xeon Platinum 8268 CPUs
(24 cores each) and 792 GB main-memory split between sockets.

4.1 On-road: New TPC-H-style Queries
The on-road surprise category addresses use cases that database
systems are expected to handle but are often overlooked in standard
benchmarks. We designed analytical queries that use the TPC-H
schema. Unlike traditional TPC-H queries, our queries diverge by
including more advanced features, including set predicates and
common table expressions. The goal is to observe how databases
behave when we deviate slightly from the standardized benchmarks
and challenge the systems’ capabilities more rigorously.
Generating on-road surprise queries. We use OpenAI’s GPT-4-
Turbo large language model to automatically generate analytical
queries based on the TPC-H schema. Our prompt includes the
TPC-H schema, an example query (𝑄8), and instructions on which
SQL features to use. We focus on nested queries, set expressions,
and common table expressions. We ensure that the resulting queries
represent meaningful information, e.g., the average total cost of
supplies provided by suppliers in each region.4 From the collection
of generated queries, we carefully select five surprise queries𝐺1−5
(see Appendix A.1) to examine in our initial case study.
Results. Figure 1 compares the latency of the newly-generated
queries (𝐺1−5) to the original TPC-H queries (𝑄1−22). We can
observe that the newly-generated queries have two outliers (𝐺2 and
𝐺4), which run surprisingly long on Postgres. Furthermore, we see
that in contrast to the other queries,𝐺3 takes longer on MonetDB
than on Postgres. In general, a first interesting observation is that
our generated queries typically run longer than the existing TPC-H
queries. This demonstrates that our surprise queries are either less
optimized or are more compute-heavy than the more data-heavy
queries of TPC-H. Especially Postgres seems to be more sensitive
towards our queries, as can been seen by queries𝐺2 and𝐺4, which
exhibit significantly higher latency.

4.2 Wrong-road: Unintentional Misuse
The wrong-road surprise category focuses on the unintentional
misuse of a database – queries that are not necessarily incorrect but

4About 2/3 of the generated queries were executable by sqlite. We started to see the
same queries multiple times when generating more than 30 queries.
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Figure 1: On-road scenario: Latency of the newly-generated queries 𝐺1−5 compared to the original TPC-H queries 𝑄1−𝑄22.
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Figure 2: Wrong-road scenario: Latency of TPC-H queries
with superfluous joins.
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Figure 3: Wrong-road scenario: Latency of TPC-H queries
with joins over string keys.
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Figure 4: Wrong-road scenario: Latency of TPC-H queries
with horizontally-split tables.

do not follow best practices. For instance, superfluous joins caused
by unnecessary overly-normalized schemas, joins over string keys,
or horizontally-split tables. The authors have observed all three
examples in real-world applications.
Superfluous joins. To examine the effects of superfluous joins, we
increase the number of joins required for 𝑄3 by distributing the at-
tributes of the orders table across multiple tables. This showcases a
suboptimal use of a database, which can often happen in real-world
scenarios where users design a schema without the optimal execu-
tion in a database in mind. As shown in Figure 2, increasing the
number of joins leads to a large increase in latency for PostgreSQL,
but not for MonetDB. We speculate that this is due to MonetDB’s
column-major storagemodel as opposed to PostgreSQL’s row-major
storage layout.

Joins over strings. Another suboptimal use of a database is to
execute joins over string columns. To quantify the effects of this
common wrong-pattern using strings as keys, we alter all keys
in the TPC-H schema from integers to various string data types.
In SQL, CHAR represents a fixed-length data type, while VARCHAR
is variable-length. We select 𝑄5 as the benchmark query for this
misuse type since it involves 5 tables to join, comparing its per-
formance on the original schema with that on modified schemas
where keys are in different string data types. As depicted in Figure 3,
transitioning from integers to CHAR(100) introduces a significant
performance overhead in PostgreSQL. Interestingly, MonetDB’s
performance remains relatively stable across all cases. We specu-
late that MonetDB’s internal dictionary encoding for string data
types makes it more robust against this type of misuse. This again
showcases that surprise queries can reveal interesting and maybe
unexpected behavior of database systems.
Horizontally-split tables. In real-world sales applications, instead
of maintaining a single monolithic table for bookkeeping sales
records, another option is to have horizontally-split sales tables
(i.e., create a separate table for each time interval and use a union
to reconstruct the result).

To simulate this wrong-pattern, we begin with a baseline query,
a modified 𝑄3, which excludes the LIMIT to force the database to
execute the query on all partitions. Furthermore, we remove the
ORDER BY clause to focus solely on presenting the wrong-pattern,
rather than sorting algorithms. Following this, we horizontally
partition the lineitem table based on the l_shipdate column.
To obtain identical results to the baseline query, two dimensions
must be considered: concatenating first the monthly tables before
query execution or concatenating last the results of sub-queries,
and performing either UNION or UNION ALL for the concatenation
operation.

Figure 4 shows the result for this wrong-pattern. It shows that
performing the concatenation first with UNION ALL is the approach
with the least overhead in both systems compared to the baseline.
Despite significant differences in behavior between the two systems,
a common takeaway is that the query optimizers in both systems are
unable to rewrite unnecessary UNION to UNION ALL in the workload
of horizontally-split tables.

4.3 Off-road: Intentionally Breaking Systems
The off-road surprise category is designed to challenge database
systems deliberately with extreme cases, probing their robustness
by pushing them to their operational limits. We focus on three com-
mon off-road surprises in our case study: long SQL strings, complex
arithmetic expressions, and complex filter predicates. While this
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Table 1: Off-road scenario: Latency (in seconds) for different
values of 𝑛. Errors: †Could not resize shared memory seg-
ment. ‡Query too complex: running out of stack space.

long SQL strings complex arithmetic complex filters
1M 10M 100M 10K 100K 1M 1K 10K 100K

postgres 0.06 0.63 27.95 0.03 0.56 † 0.01 0.06 1.05
monetdb 0.09 0.67 28.51 0.37 4.82 120.77 0.10 ‡ ‡

category strains the database systems intentionally, it is not uncom-
mon for real-world applications. For example, long SQL strings or
complex filter predicates described below could occur if queries are
programmatically-generated by application logic. In contrast to the
previous experiments, we intentionally choose a scale factor of 0.01
for our off-road experiments to isolate the internals of the database
rather than the results being influenced by data processing.
Long SQL strings. Our first setting deals with queries that are
logically simple, but have long SQL strings. To achieve this, we
use the following SQL statement, in which we replace 𝑎𝑙𝑖𝑎𝑠 with a
string with 𝑛 ∈ {1M, 10M, 100M} characters:
SELECT l_returnflag AS 𝑎𝑙𝑖𝑎𝑠 FROM lineitem LIMIT 10;

As shown in Table 1, the large aliases lead to large increases in
latency for both PostgreSQL and MonetDB despite the fact that the
queries are conceptually simple. We observe similar results for long
table aliases.
Complex arithmetic expressions. Next, we experiment with
complex arithmetic expressions in the select clause. We achieve
this using the following SQL query, in which we replace 𝑒𝑥𝑝𝑟 with a
randomly-generated arithmetic expressionwith𝑛 ∈ {10K, 100K, 1M}
components that only depend on l_quantity:

SELECT 𝑒𝑥𝑝𝑟 AS val FROM lineitem LIMIT 10;

Table 1 shows that the large arithmetic expressions also lead to
large increases in latency. Interestingly, PostgreSQL fares much
better than MonetDB for arithmetic expressions with 10K and 100K
components. However, it fails to evaluate the expression with 1M
components, which we speculate is due to a stack overflow.
Complex filter predicates. Finally, we experiment with large
filter predicates. We use the SQL statement shown below, in which
we replace 𝑝𝑟𝑒𝑑 with a large (𝑛 ∈ {1K, 10K, 100K}) disjunction of
o_orderdate = 𝑑𝑎𝑡𝑒 predicates:

SELECT o_orderkey FROM orders WHERE 𝑝𝑟𝑒𝑑 LIMIT 10;

As shown in Table 1, MonetDB fails to execute the filter predicates
with 10K and 100K components. By contrast, PostgreSQL executes
all three queries, albeit with latencies that increase super-linearly
regarding the number of components. We speculate that Postgres
in contrast to MonetDB uses lazy evaluation of predicates and
thus incrementally parses and executes the predicate, which allows
Postgres to abort predicate evaluation early if the outcome is clear.

4.4 Discussion
Overall, our case study showcases the need for surprise benchmark-
ing. In all three surprise categories, we observe that going beyond
standardized benchmark queries drives well-tested and evaluated

databases such as Postgres and MonetDB on much more challeng-
ing performance terrains even on the small scale factors (i.e., TPC-H
scale factor 0.1 and 1) used in our case study.

5 A COMMUNITY EFFORT
We propose surprise benchmarking as a new form of evaluating
data management systems beyond static benchmarks. For such a
concept to be successful over a longer period of time, it has to
become a community effort. Below, we outline how such a surprise
benchmark concept could become community-driven.
Periodic benchmarks. Instead of a one-time benchmark effort, we
envision periodic benchmarks to establish the practice of “surpris-
ing” systems. Similar to other annual contests, e.g., the SIGMOD
programming contest or the DEBS Grand Challenge [4], a sur-
prise benchmark could be run at regular intervals, e.g., quarterly
or bi-annually. While we aim to automate as much as possible, the
preparation still entails a non-trivial overhead for each benchmark.
Thus, the time frame in which the benchmarks are run should give
both the organizers and participants enough time to prepare.
Types of workloads. A regular and frequent benchmarking inter-
val, i.e., multiple times per year, allows us to cover a wide range
of workloads and systems in a shorter period of time. While one
benchmark focuses on, e.g., OLAP workloads, the next can focus on,
e.g., OLTP workloads. By covering a range of workloads, we also
encourage new ideas and less commonly used workloads to sur-
prise systems. For example, at DBTest 2018, Vogelsgesang et al. [17]
shared that 50% of the data that they see at Tableau are strings.
This insight could be turned into a string-only database benchmark,
which strongly contrasts academic mostly-integer benchmarks. As
shown in Section 4.2, the choice of strings for joins can impact the
performance significantly. However, running a benchmark for a cer-
tain workload requires expertise in the area, as the surprise queries
may otherwise have low quality. Especially the wrong- and off-road
queries require insights into how systems are actually implemented
and used but also if such a query is actually realistic.
Release previous surprises. To further strengthen the community,
we propose to share the surprises from benchmarks once they are
completed. This gives the database community a larger pool of
benchmarks to choose from and also highlights inefficiencies in
current systems. Such a surprise may encourage researchers to
investigate problems that are less widely studied, as they are not
covered by standard benchmarks.
Share insights with the community. Aside from the competition
of such benchmarks, we believe that the insights gained from the
workload surprises as well as system behavior are valuable to an
audience beyond only the organizers and participants. To increase
the visibility of these findings, we propose to establish a format
to share them at their respective annual community events or at
cross-community events such as DBTest or TPCTC.

6 DISCUSSION AND OPEN CHALLENGES
To streamline the surprise benchmarking process, we aim to au-
tomate as much of the setup and procedure as possible. However,
this is not always trivial due to the heterogeneous nature of target
systems, setups, and workloads. In this section, we outline open
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challenges that we plan to investigate throughout the course of
future surprise benchmarks.

6.1 Infrastructure
Our initial setup targets single-node databases that can run in a
single Docker container. While this covers a wide range of systems
developed in academia, many commercial or production-grade sys-
tems have more elaborate setups.
Distributed systems. Evaluating a multi-node database in a single
container is not sensible, neither is squeezing multiple services of a
distributed system into a single node, as this hides inherent network-
based communication. Thus, an open challenge remains how to
orchestrate such setups in an automated and identical (or at least
comparable) setup across distributed systems. A possible solution
is to add more advanced tooling, e.g., Kubernetes, for distributed
systems.
On-prem vs. cloud. Our current setup requires us to run the sys-
tem under test in our environment, which categorically disqualifies
all cloud-based systems. However, as these systems are increasingly
relevant, it is important to benchmark them as well. As we do not
control these systems, we need to find a way to integrate them into
our automated setup. One way is to run benchmarks “blindly” using
user accounts that the cloud provider that are not disclosed to the
cloud provider as benchmark users. That way, cloud providers can
not prepare for the benchmark user. Such a setup would already be
possible today by using the available interfaces of cloud databases
to query these systems and control the resources used. Clearly,
agreements with cloud database providers are needed so that we
are allowed to publish the benchmark results.
Hardware. An overarching issue across all types of systems is a
comparable hardware setup. Different systems may target different
hardware, e.g., modern SSDs or GPUs, while others need fast RDMA
networks or programmable network cards. If the benchmarks are
run on our infrastructure, an open challenge is how to address these
varying hardware demands. A solution could be to move everything
to the cloud. However, even there, it is not always possible to get all
types of hardware reliably and the surprise aspect can be disclosed
to the provider.
No one-size-fits-all solution. The above challenges show that
there is most likely no one size fits all solution for surprise bench-
marking, as requirements vary too much across systems and work-
loads. While this may initially seem like a major issue for automated
benchmarking as we propose, we argue that this can actually be
beneficial. Instead of focusing on integrating all systems in one
large benchmark, we can focus on different groups of systems in
addition to different workloads, at the cost of more configuration
overhead.

6.2 Workloads
Enriching well-known benchmarks is a promising way to bootstrap
the surprise benchmarking effort, but it is not likely to generate
excitement in the long term. We envision multiple ways to solicit
ideas for new surprises ranging from anecdotal sources of unpre-
dictable performance from industry practitioners to challenging
scenarios encountered by application developers to complex scien-
tific computing use cases and domains that often require specialized
data stores such as high frequency trading and real time systems.

Metrics. At first glance, performance metrics such as latency and
throughput are obvious choices for comparing systems under test.
However, many applications have additional requirements such
as low tail latency, indicating predictability of performance, and
elasticity defined as an ability to serve increasing number of (short)
requests without an increase in latency. Multi-tenancy is an orthog-
onal challenge that stresses systems’ resource management and
its ability to provide consistent performance irrespective of other
tenants’ behavior. Ensuring that evaluation metrics align with the
nature of the surprise is an open challenge.

6.3 Target Audience
One of the key requirements for a successful community effort we
envision is attractiveness tomany participants, ideally from all parts
of the database community. However, designing the benchmark
that would enable a fair comparison of academic prototypes, open
source community projects, and commercial cloud native systems
is challenging. Instead, we aim to offer different targeted challenges
that appeal to parts of the community focusing on different user
scenarios. To make participation attractive to commercial vendors
and academics alike, we could also consider the option of private
benchmarking that would increase attractiveness to vendors whose
systems have known limitations in the targeted area.
Inspiring further research. If all participants perform well in
a surprise benchmark contest, it clearly is not surprising enough.
Since our goal is to increase the spectrum of well understood work-
loads, we hope that old surprises will inspire analysis of observed
behavior and novel ideas that would improve the system designs.
Leaderboards. Automated testing infrastructure is essential for
lowering barriers to entry andmaking participation more appealing.
It will also enable easier evaluation of future research proposal that
aim to solve challenges posed by prior surprises. Having a common
leaderboard that would display both initial participants’ scores and
later entrants would provide a quick overview of the positive impact
of the surprise benchmark.

7 CONCLUSIONS
We have proposed a surprise benchmarking methodology as an
antidote to overtuning of database systems to well-known static
benchmarks. Our initial case study based on TPC-H has illustrated
the approach and provided some initial surprising results, already
offering promising avenues for improvements for Postgres and
MonetDB, the first two systems under test. We are planning to
organize the first public contest in the near future.
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A APPENDIX
A.1 On-road Surprise Queries
We consider the following generated queries for the on-road sur-
prise category.

Listing 1: On-road query 𝐺1.
WITH ordered_parts AS (SELECT l.l_partkey , COUNT (*) AS order_count

FROM lineitem l

GROUP BY l.l_partkey),

popular_parts AS (SELECT op.l_partkey

FROM ordered_parts op

WHERE op.order_count > (SELECT AVG(order_count)

FROM ordered_parts ))

SELECT p.p_name , p.p_type , p.p_brand

FROM part p

WHERE p.p_partkey IN (SELECT pp.l_partkey FROM popular_parts pp)

ORDER BY p.p_name;

This query identifies which parts are more popular than average
based on their number of orders and lists these parts along with
their type and brand.

Listing 2: On-road query 𝐺2.
WITH supplier_totals AS (SELECT s.s_suppkey ,

SUM(ps.ps_supplycost * l.l_quantity) as total_cost

FROM supplier s

JOIN partsupp ps ON s.s_suppkey = ps.ps_suppkey

JOIN lineitem l ON ps.ps_partkey = l.l_partkey

GROUP BY s.s_suppkey)

SELECT r.r_name , AVG(st.total_cost) as avg_cost

FROM region r

JOIN nation n ON r.r_regionkey = n.n_regionkey

JOIN supplier s ON n.n_nationkey = s.s_nationkey

JOIN supplier_totals st ON s.s_suppkey = st.s_suppkey

GROUP BY r.r_name

ORDER BY avg_cost DESC;

This query returns the average total supply cost per supplier within
each region, ordered from highest to lowest.

Listing 3: On-road query 𝐺3.
WITH ordered_parts AS (SELECT l.l_partkey ,

COUNT(DISTINCT l.l_orderkey) AS order_count

FROM lineitem l

GROUP BY l.l_partkey)

SELECT p.p_name , op.order_count

FROM part p

JOIN ordered_parts op ON p.p_partkey = op.l_partkey

WHERE p.p_name LIKE '%bolt%'

ORDER BY op.order_count DESC;

This query returns the name and number of distinct orders for parts
containing the word ’bolt’ in their names, ordered from most to
least frequently ordered.

Listing 4: On-road query 𝐺4.
WITH customer_orders AS (SELECT c.c_custkey ,

COUNT(DISTINCT o.o_orderkey) as order_count

FROM customer c

JOIN orders o ON c.c_custkey = o.o_custkey

GROUP BY c.c_custkey),

nation_orders AS (SELECT n.n_name , SUM(co.order_count) as total_orders

FROM nation n

JOIN customer c ON n.n_nationkey = c.c_nationkey

JOIN customer_orders co ON c.c_custkey = co.c_custkey

GROUP BY n.n_name)

SELECT r.r_name , SUM(no.total_orders) as region_orders

FROM region r

JOIN nation n ON r.r_regionkey = n.n_regionkey

JOIN nation_orders no

ON n.n_name = no.n_name

GROUP BY r.r_name

ORDER BY region_orders DESC;

This query returns the total number of distinct orders made by
customers in each region, ordered from highest to lowest.

Listing 5: On-road query 𝐺5.
WITH ranked_orders AS (SELECT o_orderkey ,

o_orderdate ,

o_totalprice ,

RANK() OVER (

PARTITION BY o_custkey

ORDER BY o_totalprice DESC , o_orderdate

) AS price_rank

FROM orders

WHERE o_orderstatus = 'F')

SELECT o_orderdate , SUM(o_totalprice) AS total_sales

FROM ranked_orders

WHERE price_rank <= 3

GROUP BY o_orderdate

ORDER BY total_sales DESC , o_orderdate;

This query returns the total sales for each date, considering only
the top three highest-priced completed orders per customer.
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