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Abstract. Despite their resource- and power-constrained nature, edge
devices also exhibit an increase in the available compute and memory
resources and heterogeneity, similar to the evolution of server hardware
in the past decade. For example, NVIDIA Jetson devices have a system-
on-chip (SoC) composed of an ARM CPU and an NVIDIA GPU sharing
RAM that could be up to 32GB. Such an SoC setup offers opportunities
to push down complex computations closer to the data source rather than
performing them on remote servers.
In this paper, we characterize the performance of two types of NVIDIA
Jetson devices for end-to-end machine learning pipelines using the TPCx-
AI benchmark. Our results demonstrate that the available memory is
the main limitation to performance and scaling up machine learning
workloads on edge devices. Despite this limitation, some edge devices
show promise when comparing against a desktop hardware in terms of
power-efficiency and reduction in data movement. In addition, exploiting
the available compute parallelism on these devices can benefit not just
model training and inference but also data pre-processing. By parallelizing,
we get close to an order of magnitude improvement in pre-processing time
for one of the TPCx-AI use cases. Finally, while TPCx-AI is a valuable
benchmark, it is designed for server settings; therefore, the community
needs an end-to-end machine learning benchmark targeting IoT/edge.
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1 Introduction

In the past decade, we have seen major advances in the field of machine learning
[1]. These advances have been mainly thanks to the availability of powerful
hardware and large datasets. On the other hand, today, many data sources
are actually small, low-powered edge or Internet-of-Things (IoT) devices, such
as mobile phones, micro-controllers in sensors, wearable or self-driving smart
platforms, etc. It becomes increasingly important to enable techniques that get
more value out of data at these edge points rather than always sending the data
to a remote and more powerful hardware device (such as a server in a data center)
for further processing and training powerful machine learning models. Getting
more value out of data closer to the source would be more secure, create new
data-intensive applications at the edge, and enable more cost- and energy-efficient
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use of data by reducing data movement. However, the challenge is operating on
devices that are much more resource-constrained compared to the CPU-GPU
co-processor servers that have sparked the machine learning advancements.

Parallel to the evolution of server hardware, the hardware resources available
at the edge have also evolved. Such devices have already deployed System-on-Chip
(SoC) designs that embraced hardware heterogeneity and co-processors earlier
than server hardware. In addition, today, they come with increased memory and
higher degree of compute parallelism. For example, NVIDIA offers Jetson devices
for edge computing that have an SoC composed of an ARM CPU and an NVIDIA
GPU sharing RAM that can be up to 32GB depending on the device type. This
evolution makes moving more data-intensive tasks closer to the sources of data
more plausible.

This paper is a step toward understanding the capabilities and limitations of
modern edge devices for machine learning pipelines. More specifically, we charac-
terize the performance of two NVIDIA Jetson devices (TX2 and AGX Xavier)
compared to a desktop hardware environment using the TPCx-AI standardized
benchmark [2]. Both NVIDIA Jetson devices and TPCx-AI are relatively new
and unexplored in our community. NVIDIA Jetson devices offer an interesting
platform for machine learning at the edge, thanks to the available GPU and main
memory. TPCx-AI offers an end-to-end perspective for machine learning, which
allows testing the impact of different stages on resource-constrained hardware
and the ability to scale the benchmark up and down, which enables stress-testing
on devices offering varying compute and memory resources. While MLCommons
[3] (formerly known as MLperf [4]) is the older and more mature standardized
benchmark collection for machine learning and also offers benchmarks for edge
devices and tiny hardware, it misses the end-to-end perspective and the workload
scaling aspects of TPCx-AI. This study, therefore, also explores the new TPCx-AI
benchmark and its potential when benchmarking modern edge devices. TPCx-IoT
[5], which is the standardized TPC benchmark for IoT settings, neither targets
AI nor would be easily extended for testing end-to-end machine learning.

The contributions of our performance characterization study is as follows:

1. Despite the increased memory resources at modern edge devices, our results
show that the available memory is still the main limitation to performance
and scaling up machine learning workloads on edge devices. Despite this
limitation, a powerful edge device such as NVIDIA Jetson Xavier show
potential to be competitive with a desktop hardware considering its power
efficiency and omitted data movement costs.

2. We demonstrate that the increased hardware parallelism at the edge is an
important asset that must be exploited. By implementing multi-threaded
data pre-processing for one of the TPCx-AI uses cases, we get nearly an order
of magnitude improvement in pre-processing time.

3. We find that even though TPCx-AI is an easy-to-deploy benchmark and
can give valuable performance insights even on hardware platforms that it is
not designed for, the community still needs an end-to-end machine learning
benchmark targeting IoT/edge settings.
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2 Background

This section describes what resource-aware machine learning constitutes and why
it is important (Section 2.1), SoC architectures and their role in resource-aware
machine learning (Section 2.2), and the TPCx-AI benchmark (Section 2.3).

2.1 Resource-Aware Machine Learning

Machine learning has become mainstream and is used in all industries, from
product recommendation on the e-commerce platform [6] to X-ray classification
in the medical industry [7]. The high predictive power of machine learning models,
mainly deep learning models, comes at a price; the newer and better models have
a higher computational cost [8] and, consequently, higher energy consumption.

While the accuracy of the trained models has traditionally been the primary
metric of focus in machine learning, creating more transparency around the
computational cost of models has gained traction recently[9]–[11]. This is also
partially fueled by the higher focus on the climate crisis motivating researchers
to be more resource-aware when designing new machine learning algorithms
rather than always increasing hardware - and hence, energy consumption, to
increase the model’s predictive power. Resource-aware machine learning includes
revised algorithms for more effective utilization of general-purpose or specialized
hardware or designing specialized hardware for accelerating training and inference
[12], [13]. The hardware focus here is not only the server hardware found in
data centers but also more resource-constrained hardware found at the edge,
representing the devices where data is captured such as handheld devices or
sensors to collect data about the surroundings.

While the hardware resources on these devices are limited, the workloads
are increasingly demanding, making efficiency even more critical. One solution
to sidestep this problem is maintaining a steady connection between the data
centers and edge devices so that sensor data can be processed quickly in the
cloud. However, depending on the data size and proximity to the data center,
this can take up too much bandwidth and incur high latency and energy costs.
An alternate approach is to perform some or all computations involved in data
processing at the place where the data is collected, at the edge. This is much
more dependent on the capabilities of the device collecting the data, and in this
work, our focus is to investigate these capabilities.

2.2 System-on-Chip Devices

System-on-chip (SoC) are devices that integrate all computer components into
a single package. These can include CPU, I/O, RAM, and other specialized
hardware, such as GPU, wireless radios, or programmable logic. SoCs have
become popular with the rise of portable and edge devices and appear in laptops
and desktop computers today.

The primary motivator for putting all of the electronics on a single chip is the
energy consumption, which is reduced by increasing proximity of components, as
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energy consumption of data transfers is directly proportional to the distance of
the transfer [14]. Furthermore, the higher energy efficiency correlates with thermal
efficiency, where the heat dissipated from the SoC devices is much lower than
their traditional counterparts. Lastly, the smaller size is also a very appealing
feature, mainly for edge devices.

For CPU-GPU co-processors, an SoC design can share RAM between CPU
and GPU. This eliminates costly memory transfers between CPU and GPU,
leading to lower latency and energy consumption overall. Having memory shared
also means that the total memory capacity can be increased, leading to previously
unseen capacities for GPUs at the edge, which could alleviate the struggle data
scientists meet when trying to train and deploy larger models.

2.3 TPCx-AI Benchmark

TPCx-AI [2] is a benchmark suite developed to test and evaluate the end-to-end
machine learning capabilities of a system. The benchmark, which comes with a
codebase, provides a platform that

– generates and processes large volumes of data mimicking real-world use cases,
– trains on pre-processed data to produce realistic machine learning models,
– conducts accurate insights for real-world customer scenarios based on the

generated models,
– can scale to large-scale distributed configurations, and
– allows for flexibility in configuration changes to meet the demands of the

dynamic AI landscape.

For the real-world use cases, the benchmark draws inspiration from the retail
industry, where most companies utilize AI techniques to boost their competitive-
ness. The benchmark size is scalable to accommodate business needs of different
sizes. Users can provide, amongst others, a scaling factor (SF), which indicates
the size of the data set for benchmarking.

The benchmark consists of ten use cases, each taking advantage of a different
machine learning techniques ranging from traditional techniques, such as k-means
clustering and naive Bayes classifier, to more advanced and recent techniques,
such as recurrent neural networks. The use cases incorporate diverse input data,
where tabular data is complemented with image, audio, and textual data; and
cover both supervised and unsupervised learning.

Out of the ten use cases only use cases 2, 5, and 9 rely on the use of a GPU.
The rest of the use cases rely fully on the use of CPU. The distribution between
the amount of data pre-processing and model training/serving varies across the
use cases. Use cases 8, 9, and 10 are heavily skewed towards pre-processing. We
especially focus on the pre-processing stage of use case 8 in Section 4.3.

Test phases. One key distinguishing factor of TPCx-AI from the older MLCom-
mons benchmark is its focus on end-to-end machine learning instead of solely
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focusing on training or inference. Therefore, the benchmark comprises six phases,
described below, that run sequentially for each use case.

(1) Load test (LT) tests the process of copying the input files generated
using the TPCx-AI data generator to the directories they will be fetched from
during the benchmark run. This stage tests the storage infrastructure used during
the benchmark run.

(2) Power training test (PTT) determines the maximum speed of training
phase of each of the use cases, which includes the process to load and pre-process
the data before the data is fed to the training process. It outputs (1) the total
time of training in addition to the time taken per use case, and (2) the model
files, which are to be used in the subsequent test phases.

(3) & (4) Power serving test I & II (PST, PST1 & PST2) determines
the maximum speed at which the system-under-test can perform the serving phase
of all use cases. Same as PTT, this test includes time to load and pre-process
the data before the data is fed to the serving process.

(5) Scoring test performs a separate serving phase of each of the use cases
on a newly generated dataset to determine the accuracy or error incurred by
each of the use cases.

(6) Throughput test (TT) runs several concurrent streams, each containing
all of the use cases in a unique order. This tests the ability of the system-under-
test to serve models from different use cases to multiple users. The default value
of the number of streams is 2, which can be modified.

Metrics. After every benchmark run, a report is computed by the benchmark
utility, providing a set of metrics that can be used to compare the system-under-
test with other systems.

The TPCx-AI benchmark defines their own set of metrics [2] [Benchmark
Specification, Section 7.5].

TACRONY M is the geometric mean of the time spent in seconds for each test
phase per use case. ACRONYM corresponds to the acronym of the given
test phase as listed above. For example, TTT means time spent in throughput
test phase of the benchmark.

AIUCpm@SF is AI Use Case performance metric at Scaling Factor and
summarizes a subset of the other performance metrics in a single scalar value.
It is computed by the following formula, where SF is the scaling factor and
N is the number of use cases (always 10):

SF ·N · 60
4
√
TLT · TPTT · TPST · TTT

DATAGEN is the time spent in seconds generating the complete data-set.
$/AIUCpm@SF is a metric to highlight price per performance. For Transaction

Processing and Performance Council (TPC), it is customary to report the
total cost of a system divided by the achieved performance [15]. This is also a
useful metric that gives a rough estimate of how much value for money that
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a system yields. In our experiments, the performance metric is AIUCpm@SF
and the currency is USD.

Except for AIUCpm@SF , lower values are better for these metrics.

3 Related Work

TPCx-AI is a relatively new standardized benchmark [16]. Hence, to the best of
our knowledge, our work is the first study that utilizes TPCx-AI for performance
characterization of hardware, especially edge devices, since the introduction of
TPCx-AI in [17].

In contrast, several works have tested edge devices for artificial intelligence.
In [18], an NVIDIA Jetson Nano, a Raspberry Pi 4, a Google Coral Dev Board
and an Arduino Nano 33 BLE microcontroller are benchmarked on selected deep
learning tasks focusing on training and inference. In [19], a benchmark suite
is developed targeting machine learning and cognitive science applications to
test cloud, edge, and mobile devices. The benchmark is also adapted to test
distributed computers serving multiple end-users. In addition to working on
benchmarks, in [20], the authors focus on model instability at the edge.

Our work is complementary to these works since our aim is to study the
performance of modern powerful edge devices such as NVIDIA Jetsons for end-
to-end machine learning tasks (not just inference or training). In parallel, we are
investigating the potential of the TPCx-AI benchmark beyond benchmarking on
server hardware.

4 Experimental Methodology and Setup

Our goal is to characterize the performance of modern, powerful edge devices for
end-to-end machine learning. This section presents the experimental methodology
and setup we deploy to achieve this goal.

4.1 Systems

To represent state-of-the-art modern edge devices, we pick two offerings from
NVIDIA with varying hardware resources. In addition, we use a desktop hardware
setup as the baseline to compare against the edge devices. Section 4.1 summarizes
the specifications of these devices.

NVIDIA Jetson TX2, labeled TX2 in short, is a portable SoC composed of
a power-efficient ARM-CPU & NVIDIA GPU, designed for embedded systems
that require GPU-friendly computations, e.g., image processing, video encod-
ing/decoding, and machine learning tasks. TX2 used in our experiments comes
with 8GB RAM (shared between CPU & GPU) and 32GB eMMC storage, a
6-core ∼ 2GHz ARM64 CPU and 256 CUDA Core GPU [21], [22]. The device
can operate at a wattage between 7.5W-15W. We configured our TX2 to operate
at 15W, increasing the maximum clock rates but doubling power consumption.
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We also added extra storage in the form of an SD-card (32GB) to fit the entire
TPCx-AI benchmark suite.

To accommodate the memory requirements of TPCx-AI scaling factors 1-3,
we reserved 12GB of disk space as swap memory, in addition to the default of
∼ 4GB compressed swap memory (zram).

NVIDIA Jetson AGX Xavier, labeled Xavier in short, is also a portable
computer by NVIDIA, but with more powerful hardware and designed specifically
for autonomous machines [23]. Xavier used in our experiments has an 8-core
∼ 2.2GHz ARM64 CPU, a 512 CUDA-core GPU and ∼ 32GB memory shared
between the CPU and GPU. The device can operate at a wattage between
15W-30W. As with TX2, we configured the device to operate at the maximum
wattage (30W) to maximize clock rates despite the double power consumption.
Like TX2, the device is fitted with 32GB eMMC storage [21], but unlike TX2,
we opted to add a USB 3.0 storage device (64GB).

Software-wise, both TX2 and Xavier runs NVIDIA’s Ubuntu distribution for
the Jetsons, as provided by NVIDIA Jetpack [24] on both devices. We also used
Jetpack to install the most commonly used machine learning libraries such as
CUDnn and OpenCV.

Desktop setup, also labeled as Desktop, that we used as a baseline for our
comparisons includes an NVIDIA GeForce RTX 2070 GPU and an x86 6th
gen Intel i7 CPU with 16GiB RAM. The power consumption of the device is
estimated from the power requirements of the GPU to be at most 550W [25].

As a rule of thumb, the power consumption can be assumed to be about one
order of magnitude above that of a Jetson device.

Device GPU CPU RAM PWR Price

TX2 NVIDIA Pascal,
256 CUDA Cores

NVIDIA Denver
(2 Cores) & Arm
Cortex A57 (4

Cores) @ 2.0 GHz

8GB 15W $399

Xavier NVIDIA Volta,
512 CUDA Cores,
64 Tensor Cores

8 Cores ARM v8.2
64-bit @ 2.2 GHz

32GB 30W $699

Desktop NVIDIA RTX
2070, 2304 CUDA
Cores, 288 Tensor

Cores

8 Cores Intel Core
i7-6700K @ 4.0

GHz

16GB (CPU),
8GB (GPU)

∼ 550W -

Table 1: Systems-under-test in our experiments. The information for the Jetson
devices are taken from [21], [26]. The price column represents manufacturer
suggested retail price, which we couldn’t find for all the Desktop components.
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4.2 Metrics

The metrics used to reason about the performance of Jetsons is organized into
three categories: application-level (reported by TPCx-AI), hardware utilization,
and power consumption metrics.

Application-level. These are the metrics reported by TPCx-AI (see Sec-
tion 2.3). We omit the DATAGEN metric due to the added network overhead
overshadowing the actual data generation time in our setup (see Section 4.3).

Hardware utilization. While the benchmark metrics show how quickly
the system completes different AI-related tasks, it leaves the question of how
efficiently the resources of this system are utilized while performing these tasks.
Understanding hardware utilization characteristics can also help comprehend
performance differences across the benchmark use cases and hardware systems.

To measure hardware utilization, we monitor the CPU and GPU utilization
and memory consumption, at each second using the tegrastats utility provided
by NVIDIA for Tegra-chipset [27], which is what the Jetson devices have. On
the desktop hardware, we use nvidia-smi [28] and ps [29] utility provided by
NVIDIA and unix, respectively, for the same measurements.

Power consumption. In addition to the hardware utilization, we record the
power consumption of each device to explore efficiency further. For the NVIDIA
Jetson devices, the system power consumption is collected by the tegrastats

utility. However, there is no way to collect the complete information through the
available software for the desktop. In that case, we only collect the GPU’s power
consumption reported by nvidia-smi. The power consumption is recorded as a
snapshot measurement of system wattage in both cases. To complement this, we
accumulate the power consumption over time as a single watt-hour measurement
for each use case of each benchmark run.

4.3 Benchmark Suite Modifications

We made three modifications to the TPCx-AI benchmark suite1: (1) to run the
benchmarks in a non-x86 environment, (2) bug fix related to the batch size in
Use Case 5, and (3) a performance-related modification.

First, the data-generation component of the TPCx-AI benchmark suite (the
PDGF[2, Specification p. 64]) is compiled for x86-64 architectures only and cannot
run on our Jetson devices. Therefore, we set up a separate Intel x86-64 machine
with a purpose-built HTTP server to run the data-generation software and
provide the generated data files. On our Jetson devices, we replaced the PDGF-
executable with an executable that acts as a client for the HTTP server. This
way, we move the data from the x86 machine to the Jetsons over the network
before the benchmarking phase starts.

Then, we discovered a bug in Use Case 5 (line 166), where a parameter batch
was not being passed to the serve function, leading to much higher memory

1 The changes we made to the codebase can be found at https://github.com/

ContainedBlargh/TPCx-AI-on-Nvidia-Jetsons

https://github.com/ContainedBlargh/TPCx-AI-on-Nvidia-Jetsons
https://github.com/ContainedBlargh/TPCx-AI-on-Nvidia-Jetsons
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demands for serving than for training. As that parameter is configurable but not
passed, we assumed this was a bug.

Finally, we changed the data pre-processing step of Use Case 8 to be multi-
threaded, which improved the times to run this use case drastically. In Section 5.3,
we highlight the performance impact of this modification.

5 Results

We ran the TPCx-AI benchmark five times and reported the mean and standard
deviation for each configuration (device & scaling factor). As for the scaling
factor, we use the values of 1 and 3, as higher scaling factors cannot fit in Jetson
devices. Unless stated otherwise using the label original, all reported results
are with the modified version of use case 8. The results are split into three parts:
(1) overall results from the whole benchmark run, (2) time-breakdowns for each
use case, and (3) impact of parallelizing pre-processing of use case 8.

Metric TX2,
SF=1

Xavier,
SF=1

Xavier,
SF=3

Desktop,
SF=1

Desktop,
SF=3

AIUCpm@SF
Mean 8.18 28.91 31.10 90.15 152.29
St. dev. 2.54 1.48 3.80 2.42 5.19

$/AIUCpm@SF
Mean 37.84 24.23 22.73 -* -*
St. dev. 9.10 1.29 2.66 -* -*

TLT (seconds)
Mean 39.34 s 1.85 s 27.72 s 1.33 s 2.33 s
St. dev. 19.81 s 0.40 s 13.57 s 0.04 s 0.25 s

TPTT (seconds)
Mean 308.19 s 94.66 s 198.88 s 34.91 s 84.17 s
St. dev. 7.10 s 3.27 s 5.66 s 1.45 s 3.53 s

TPST (seconds)
Mean 48.51 s 28.06 s 45.49 s 6.99 s 10.28 s
St. dev. 1.42 s 0.67 s 2.19 s 0.38 s 0.09 s

TTT (seconds)
Mean 72.89 s 38.52 s 50.91 s 6.06 s 9.75 s
St. dev. 4.10 s 1.65 s 3.12 s 0.34 s 0.13 s

Table 2: TPCx-AI metrics (see Section 2.3 for details). *Due to unknown price,
the $/AIUCpm@SF has been omitted.

5.1 Whole Benchmark Run

Table 2 lists the mean and standard deviation values for the metrics reported
by TPCx-AI. To help us explain some of these benchmark metrics, Table 3
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Total
swapped

TX2,
SF=1,

original

TX2,
SF=1

Xavier,
SF=1

Xavier,
SF=3

Desktop,
SF=1

Desktop,
SF=3

Mean (MB) 4271.8 3974.6 0.30 1008.99 3597.33 19335.2

Table 3: Total memory (MB) swapped to disk during training of all use cases.

presents the amount of memory swapped during the whole benchmark run for
each device. When we monitored the hardware utilization information throughout
the benchmark runs, it became clear that memory was the primary resource
under pressure. All the hardware devices used in this work have relatively limited
physical memory (8GB to 32GB) compared to today’s state-of-the-art server
hardware in data centers (100GB to TBs). As a result, when the working dataset
size of TPCx-AI does not fit into the available device memory, it triggers memory
swaps, meaning parts of the working memory are moved to the disk so that
currently required data can be loaded into memory. Thus, instead of showing
CPU/GPU utilization, we have results for swapped memory here.

Looking at the benchmark’s performance summary metric, AIUCpm, Desktop
hardware is an order of magnitude better than TX2. As Table 3 demonstrates,
TX2 exhibits a high number of swaps due to its smaller memory size, which results
in this behavior. In addition, the SD card in TX2 causes a high TLT , which is the
most data-intensive task, since it includes reading/writing data from persistent
storage.

Comparing Xavier to Desktop hardware, the difference in performance in-
creases with a higher scaling factor. However, Xavier performs roughly the same
in terms of AIUCpm across the two scaling factors showing that it scales well with
the increase in scaling factor. In addition, it has larger main memory and exhibits
the lowest number of swaps. However, it has two main bottlenecks compared to
Desktop, which results in lower performance. First, Xavier has a slower ARM
processor compared to the x86 in Desktop. Second, the eMMC-based storage
is also slower than the SATA SSD in Desktop, as highlighted by the different
behavior between the TLT results for the two scaling factors.

We leave the parameters that determine the degree of parallelism to default
values set by TPCx-AI, except for the pre-processing phase of use case 8 (see
Section 5.3). Looking at the results for TPTT , TPST , TTT , we see the impact of
both the differences in processor speed and the different degrees of hardware
parallelism each device provides.

From a price/performance perspective, $/AIUCPm, both Jetson devices
perform similarly.

Lastly, Table 4 presents the total power consumption for each device for
the whole benchmark run. Despite the lower power draw of TX2 compared to
the other devices (Section 4.1), it consumes the highest power to complete the
benchmark since it takes a longer time to complete a benchmark run. Xavier
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Power
consumption

TX2,
SF=1,

original

TX2,
SF=1

Xavier,
SF=1

Xavier,
SF=3

Desktop,
SF=1

Desktop,
SF=3

Mean (Wh) 30.31 19.09 8.24 16.27 10.23 12.50
St. dev (Wh) 0.58 0.34 0.21 0.78 1.21 0.32

Table 4: Total power consumption by device across all benchmarks in watt-hours.
Note that Desktop power measurements are GPU-only.

behaves similarly to Desktop even though the Desktop results only count the
GPU power consumption. Based on this, Xavier is competitive in terms of
power/performance ratio over the other devices.

5.2 Time-breakdown per Use Case

Figure 1 and Figure 2 breaks the training (Phase #2) and serving (Phase #3 &
#4) phase (Section 2.3) of each use case in the benchmark, respectively. TPCx-
AI reports time (TPTT and TPST ) at a coarse granularity from these phases
for the individual use cases. We further break this time into loading, which is
the time to fetch data from storage and join/merge them if there are multiple
data files, pre-processing, which is the time to pre-process the data to be fed
to training/serving, and training/serving, which is the time that goes to actual
training/serving.

The figures show that TX2 takes the most time and Desktop hardware takes
the least time to complete the phases. This is expected considering the hardware
resources available on these devices and the results reported in Section 5.1. Fur-
thermore, we observe that different use cases stress the different phases of training
and serving. Use case 1 exhibits higher loading times, while training/serving
times dominate the time-breakdown for use cases 2, 4, 5, 6, and 7. On the other
hand, for use cases 8, 9, and 10, the pre-processing times are more pronounced
(as also Section 2.3 highlights). This shows that TPCx-AI use cases exhibit a
good variety in terms of the machine learning tasks they stress at runtime.

Comparing the results of scaling factors (SF) 1 and 3, there is no direct scaling
of runtimes for different components. For some use cases, the times roughly triple,
but in most cases, they are sub- or super-scalar. We omit SF=3 results for TX2
due to its prohibitively long run times, which are a result of the low memory
(8GB) on this device causing frequent swap operations (Table 3).
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Fig. 1: Time-breakdown of the training phase of individual TPCx-AI use cases
using revised use case 8. Notice the different scale on y-axes.
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Fig. 2: Time-breakdown of the serving phase of individual TPCx-AI use cases
using revised use case 8. Notice the different scale on y-axes.
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Power
consumption

TX2,
SF=1,

original

TX2,
SF=1

Xavier,
SF=1

Xavier,
SF=3

Desktop,
SF=1

Desktop,
SF=3

Mean (Wh) 25.39 14.27 3.66 7.38 2.86 1.41
St. dev (Wh) 0.50 0.46 0.10 0.56 0.12 0.25

Table 5: Power consumption for use case 8 by device in watt-hours. Note that
Desktop power measurements are GPU-only.

5.3 Use Case 8

When we first ran the whole TPCx-AI benchmark suite on TX2 and Xavier out
of the box, after setting up both environments with necessary software libraries
and additional storage, it took about 4.5 and 2 hours, respectively. The time-
breakdowns for individual use cases showed that the pre-processing time of the
training phase of use case 8 was a clear outlier. Digging deeper into its code, we
realized that it could be parallelized with slight modifications. After applying
our changes and running this pre-processing step using three threads, the total
run times of the whole benchmark run were reduced to about 2.75 hours for TX2
and 45 minutes for Xavier. Focusing solely on this pre-processing step, the time
to complete it got reduced by 70% and 84% on TX2 and Xavier, respectively.

Comparing the two variations of the TX2 SF=1 results on Table 3 and Table 4,
where original refers to TPCx-AI code without the use case 8 modifications,
also shows the positive impact of this code change in terms of reducing both
the overall memory pressure and power consumption. Table 5 reports the power
consumption for use case 8, specifically showing a similar impact.

6 Discussion

This section discusses the highlights of the results in Section 5 and pros/cons of
using TPCx-AI to benchmark edge devices for end-to-end machine learning.

6.1 Machine Learning on Jetsons

Our goal was to characterize the performance of NVIDIA Jetson devices for
machine learning. Our results highlight that main memory can easily become
the factor that limits performance, especially on the smaller Jetson devices, such
as TX2. On one hand, the more powerful processors, like the one we have on
Desktop, can compensate for the memory bottleneck. On the other hand, from a
cost- and energy-efficiency perspective, the more expensive and power-hungry
Xavier device has an advantage over TX2 since it can complete the machine
learning tasks faster. Xavier performs even at a similar level with Desktop when
it comes to energy-efficiency.
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In a data center setting, it is common wisdom [30] that if an application is
latency-critical, a fast multicore x86 processor, like the one on Desktop, is more
performance-efficient than an ARM processor, like the one on Xavier and TX2.
Our results also corroborate this wisdom if we assume that all the processing is
done locally omitting the cost of going over the network. More specifically, the
Jetson devices are designed for the edge. In addition to being designed for energy-
efficiency, they are also deployed at the source of data collection. In contrast,
Desktop would be a device where the data is sent to for further processing from
its source device. Therefore, when considering latency in an edge setting, one must
take into account the cost of moving the data from the source to another device
if the processing cannot be done at the edge. From this perspective, declaring a
clear winner between Xavier and Desktop for latency is challenging.

6.2 TPCx-AI Benchmark for Edge Devices

TPCx-AI is a relatively new standardized benchmark and has not been designed
with edge/IoT settings in mind. It targets end-to-end machine learning at data
center or high-performance computing settings, where both compute and memory
resources are plenty. Such settings can handle the memory pressure and through-
put needs of TPCx-AI easily. In addition, the reference TPCx-AI implementation,
while tremendously helpful for using the benchmark almost out of the box, is
there to guide people to deploy the same use cases on the machine learning
framework they want to analyze.

In our work, we use TPCx-AI on edge devices, which are designed to minimize
latency at small-scale rather than throughput, i.e., work quickly with small-scale
data, and to be energy-efficient. We also aimed at using TPCx-AI’s reference
implementation as is. One can claim that our setup is not an ideal use of this
benchmark. However, for testing end-to-end machine learning, to the best of our
knowledge, there is no other viable option. In addition, the ability to scale the
workloads up and down using scaling factors, which is a common functionality in
TPC benchmarks, is very valuable for testing hardware with differing resource
characteristics. Thus, testing the potential of this benchmark at the edge settings
was worthwhile to us.

Overall, we found that using the python-based reference implementation; one
can use TPCx-AI almost out of the box, even for edge settings. The main challenge
against using it directly out of the box was the data generation component, which
is closed source and built for x86 environments. Thus, we had to generate our
data on an x86 machine and move our data to the edge device (Section 4.3).
For the python libraries, using the counter-parts available on the Jetson was
relatively straightforward. While all this still requires non-negligible setup time,
it was feasible since it took us a couple weeks, not months.

On the other hand, even the TPCx-AI scale factor 1 is too big for the memory
resources of the smallest device we had, TX2. In addition, the nature of the
throughput tests where multiple models were in use may not be representative
for edge settings where typically a few models would be deployed. Furthermore,
considering the higher availability of CPU parallelism and GPU resources at the
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edge, having more parts of the reference implementation that can exploit CPU
parallelism or run on a GPU would be helpful. Finally, when testing hardware,
especially at the edge, both cost- and power-efficiency must be considered in
addition to the AIUCpm. Although TPC also has a standardized way to measure
power/performance trade-off, it is rarely reported in the results published on
TPC’s webpage. Considering our results and increasing importance of being
power-efficient, we argue that more people should publish power results.

Going forward, when designing an end-to-end machine learning benchmark, it
is preferable if the reference implementation can scale the workload up and down
similar to TPCx-AI but simultaneously have the ability to scale the datasets
further down and exploit more and different types of hardware parallelism.
While doing this design, the use cases and throughput tests should be adjusted
accordingly. For example, one can include a transfer learning (partial training on
pre-trained models) use case since edge devices today are rarely used for the full
training of the models. On the other hand, having a few full training cases would
be interesting to observe the strengths of a particular device.

Lastly, one can also devise an experimental study by picking and choosing
different combinations of use cases instead of running the full benchmark suite.
While this was possible for TPCx-AI, we have not investigated this route yet.

7 Conclusion

In this work, we performed a performance characterization study of two modern
high-end edge devices, NVIDIA Jetson TX2 and AGX Xavier, for end-to-end
machine learning. We identified the TPCx-AI benchmark as a good candidate
for generating the workload for such a study and a consume-grade CPU-GPU
co-processor, desktop machine, as a baseline. Our study shows that the small
memory of TX2 is a limiting factor of performance, while Xavier achieves a good
cost- and energy-efficiency. In addition, exploiting the increasing degrees and
types of hardware parallelism is not only crucial for big server settings but also
for the edge. Finally, while TPCx-AI provided us with many valuable insights
without high deployment cost, a more thorough characterization of such edge
devices requires a benchmark that is specialized for end-to-end machine learning
for the edge/IoT settings.
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