
An Analysis of Collocation on GPUs for
Deep Learning Training

Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün
IT University of Copenhagen

titr,ehyo,pito@itu.dk

Abstract
Deep learning training is an expensive process that exten-
sively uses GPUs. However, not all model training saturates
modern powerful GPUs. To create guidelines for such cases,
this paper examines the performance of the different colloca-
tion methods available on NVIDIA GPUs: naïvely submitting
multiple processes on the same GPU using multiple streams,
utilizing Multi-Process Service (MPS), and enabling the Multi-
Instance GPU (MIG). Our results demonstrate that collocating
multiple model training runs yields significant benefits, lead-
ing to up to three times training throughput despite increased
epoch time. On the other hand, the aggregate memory foot-
print and compute needs of the models trained in parallel
must fit the available memory and compute resources of the
GPU. MIG can be beneficial thanks to its interference-free
partitioning but can suffer from sub-optimal GPU utilization
with dynamic or mixed workloads. In general, we recom-
mend MPS as the best-performing and most flexible form of
collocation for a single user submitting training jobs.

CCS Concepts: • Computing methodologies → Artificial
intelligence; Machine learning; • Hardware; • Computer
systems organization → Parallel architectures;

Keywords: resource-aware deep learning, collocation on
GPUs, MIG

ACM Reference Format:
Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün. 2024.
An Analysis of Collocation on GPUs for Deep Learning Training.
In 4th Workshop on Machine Learning and Systems (EuroMLSys ’24),
April 22, 2024, Athens, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3642970.3655827

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroMLSys ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0541-0/24/04. . . $15.00
https://doi.org/10.1145/3642970.3655827

1 Introduction
Today’s GPUs are significantly more powerful than those of
a decade ago. Modern GPUs, together with larger datasets,
facilitate the exponential growth of deep learning models.
Many data scientists, however, do not require large models
in practice. For example, a problem may not have a large
enough dataset to warrant a large model1, or the ideal batch
size for training the model may not be large enough to uti-
lize all of the GPU resources [2, 11, 12, 28]. This poses an
hardware under-utilization issue [11, 31] when training neu-
ral networks as the training process usually takes exclusive
access to a GPU. This problem gets exacerbated with each
new GPU generation offering more hardware resources.

Workload collocation is a method for increasing hardware
utilization by running multiple applications at the same time
over the same hardware resources. That way, the device
and its resources are shared among the collocated appli-
cations. While workload collocation is heavily studied for
CPUs [8, 10, 17], its opportunities and challenges have been
largely unexplored for modern GPUs. In addition, unlike
CPUs, GPUs lack sophisticated resource-sharing methods
such as virtual memory and fine-grained sharing.
Today, there are several methods for workload colloca-

tion on a GPU. Firstly, multiple processes can be assigned
to the same GPU simultaneously without any explicit pro-
cess management. Alternatively, the collocation can be more
precisely managed, for example via NVIDIA’s Multi-Process
Service (MPS). Finally, the latest generations of NVIDIAGPUs
can be partitioned into fully isolated GPU instances at the
hardware level via Multi-Instance GPU (MIG).
This paper analyzes different ways of collocating deep

learning model training on NVIDIA GPUs. Specifically, we
investigate the strengths and limitations of the new MIG
technology in contrast to the older methods. We charac-
terize the performance of the above-mentioned collocation
methods on an A100 GPU. We diversify our workload by
considering three datasets (ImageNet, ImageNet64x64, Ci-
far10) representing different sizes (large, medium, small).
Furthermore, we acknowledge that the current deep learn-
ing landscape employs a wide variety of model architectures.
We investigate two popular convolutional models (ResNet,
EfficientNetv2) and one transformer model (CaiT). Addition-
ally, we collocate a recommender model with a vision model
1Data scientists in our lab routinely use less than half of the requested GPU
resources during their model parameter exploration.

81

https://doi.org/10.1145/3642970.3655827
https://doi.org/10.1145/3642970.3655827
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3642970.3655827&domain=pdf&date_stamp=2024-04-22

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

7g.40gb

3g.20gb3g.20gb

2g.10gb2g.10gb 2g.10gb

1g.5gb1g.5gb 1g.5gb1g.5gb1g.5gb1g.5gb 1g.5gb

1 x 7g.40gb

2 x 3g.20gb

3 x 2g.10gb

7 x 1g.5gb

Figure 1. MIG partitioning schemes on a NVIDIA A100-
40GB GPU. Horizontals can overlap but verticals cannot. For
example, having a 3g.20gb instance is not compatible with
five 1g.5gb instances but is compatible with two 2g.10gb
instances (figure adapted from [18]).

to demonstrate the merits of workloads containing mod-
els that stress different parts of the hardware. Our results
highlight that:
• When model training is unable to utilize the full GPU on
its own, i.e., when running on our small- and medium-
sized training cases or cases that stress different parts of
the GPU, training multiple models in collocated fashion
presents considerable benefits. On the other hand, for
large model training, collocation provides either limited
improvements to throughput as the GPU becomes over-
saturated or cause model training to crash when the
available GPU memory is not big enough to hold the
combined memory footprint of the collocated models.

• On all the combinations we evaluated, MPS performs
better than naïve and MIG collocation, allowing single-
user workloads to get the most out of the hardware with
minimal setup required.

• MIG offers strict separation of the GPU’s memory and
compute resources across the collocated workloads, elim-
inating interference. It also allows multi-user colloca-
tion, unlike MPS, and can achieve higher energy effi-
ciency when the partitions are set well. On the other
hand, MIG requires creating hardware partitions a priori.
For the cases of well-defined workloads, one can create
the ideal MIG partitions and leverage MIG-based colloca-
tion. However, for more dynamic workloads where the
workload mix changes over time, MIG would require re-
partitioning to perform well, whereas other collocation
methods still provide benefits.

2 Background
This section first provides background on different methods
of collocation. Then, we survey related work on workload
collocation for deep learning.

2.1 Collocation on GPUs
A CUDA stream [1] is a sequence of operations that execute
on the GPU (i.e., kernels and data transfers) in the order they
are issued. While operations within a stream are guaranteed
to execute in the prescribed order, operations in different
streams can run concurrently. This concurrency helps with

Table 1. Models & Datasets

Model Dataset #Parameters Size
ResNet26 Cifar10 17M small
ResNet50 ImageNet64 24M medium
ResNet152 ImageNet 59M large
EfficientNet_v2_s ImageNet64 22M medium
CaiT_xxs24_224 ImageNet 12M large
DLRM Criteo Terabyte 24B very large

overlapping the stall time due to the data transfers between
the host CPU and GPU in one stream with work from an-
other stream. We call this type of workload collocation the
naïve method since it offers a limited way for sharing GPU
resources. This is because the streams have to share the
GPU compute resources in a time-based manner rather than
having resources explicitly dedicated for each stream.
The multi-process service (MPS) [20] enables the host

CPU to launch multiple processes on a single GPU. Similar
to naïve collocation, these processes share the GPU memory
and memory bandwidth. However, unlike naïve collocation,
the streaming multiprocessors (SMs) of the GPU are split
across the different processes. Assignment of the SMs is done
by the MPS daemon automatically, unless explicitly stated
by the user, based on the provisioning of the GPU resources
needed for each process. This reduces interference across
the different processes compared to the naïve approach. One
limitation of MPS is that it cannot collocate applications
launched by different user accounts for security reasons.

Multi-instance GPU (MIG) [18] is the most recent collo-
cation technology introduced with NVIDIA’s Ampere GPUs.
It provides hardware support for splitting a GPU into smaller
GPU instances. Each instance can run a different process al-
lowing these processes to run in parallel on the same GPU.

An A100 GPU with 40GB memory supports several avail-
able partitioning profiles (see Figure 1). The smallest possible
GPU instance is one with just one memory slice and one
compute slice, 1g.5gb, with 14 streaming multiprocessors
(SMs) and 5GB of memory. Consecutively, a 2g.10gb profile
consists of two compute slices (28 SMs) and two memory
slices (10 GB of memory). The other available profiles are
3g.20gb, 4g.20gb, and 7g.40gb. The last profile consists of
almost all of the GPU resources. However, using the GPU
without MIG mode is not analogous to running this large
profile as the compute capability of the GPU is hampered
slightly due to MIG management overhead; i.e. the reduced
compute slice as mentioned above (10 SMs). Each partition is
strictly separated in terms of hardware resources preventing
any form of interference across partitions.

Many different partitions are possible as long as the max-
imum resource capacity is not exceeded. The partitioning
rules are set by the GPU itself, and the allowed set of in-
stances and configurations varies across different types of

82

An Analysis of Collocation on GPUs for
Deep Learning Training EuroMLSys ’24, April 22, 2024, Athens, Greece

NVIDIA GPUs (A100, A30, H100, H200). Finally, a GPU in-
stance may also be split into multiple compute instances
from the compute side with unified memory. This can be
useful when compute and memory requirements do not fol-
low the same pattern. For example, one could run a memory
intensive model and a compute intensive model with isolated
compute instances on a single GPU instance.

2.2 Related work
Collocation on GPUs have been studied in two dimensions:
software and hardware approaches. Software approaches
either focus on developing better primitives for collocation
on GPUs or provisioning the resources of GPUs for running
multiple applications [3, 22, 34]. In contrast, hardware ap-
proaches propose micro-architectural changes to GPUs to
enable finer-grained and more precise multi-application exe-
cution within a GPU considering performance, utilization,
and quality of service trade-offs [6, 7, 29, 30, 33, 36].
MIG is a relatively new technology and there have not

been many works that thoroughly explore its possibilities.
HFTA [28] is a mechanism to fuse multiple model training
runs for hyper-parameter tuning into one training run. The
authors show the effectiveness of HFTA compared to using
MPS or MIG to run multiple training runs in parallel. MISO
[15] runs MPS on a 7g.40gbMIG instance to predict the best
MIG configuration for different jobs. Finally, Li et al. [14]
characterize performance of only MIG using deep learning
models focusing on time and energy metrics.

In general, our work is orthogonal to these works since we
investigate the strengths and limitations of MIG in contrast
to the older collocation techniques such as MPS and naïve
collocation and use workloads of different sizes.

3 Impact of Collocation
3.1 Setup & Methodology
System. Our experiments run on a DGX Station A100, com-
posed of an AMD EPYC 7742 CPU (64 cores, 512GB RAM)
and four A100 40GB GPUs (108 SMs). Each of the A100 GPUs
have 40GB of VRAM and support up to 7 MIG instances with
at least 5 GB of memory per instance (see Section 2.1).

Experiments. The experiments are devised with varying
dataset sizes [4, 5, 13, 25] and models [9, 16, 26, 27] to assess
the performance of collocating deep learning training under
different loads (Table 1). We orchestrate the execution of
the workloads via a benchmarking framework [23]. The
vision models are sourced from the TIMM library [32], the
recommender model from Facebook Research [16], and we
are using the latest version of PyTorch as of the start of our
experiments (2.0) [21].

3.2 Uniform Collocation
Figures 2-4 illustrate the results of our uniform collocation
experiments. Each figure illustrates a particular model and

dataset combination (as subset of the listed combinations
in Table 1).2 Bars that are grouped together form one collo-
cated workload with models trained in parallel. The different
degrees of collocation are separated by dotted vertical lines.
The four non-collocated cases, which do not run any models
in parallel, are the first four bars and form our baselines.

3.2.1 Time per Epoch. Our main performance metric
when comparing the effectiveness of different collocation
methods is Time per epoch. We time the second epoch of
training, skipping the first one as warm-up.
Looking at the first four bars of Figures 2a-4a, reveals

that there is a little variation between the first three non-
collocated workloads: naïve, mps, and 7g.40gb. This indi-
cates that MPS and MIG have negligible overhead. On the
other hand, we see the impact of having fewer resources
available on the 4g.20gbMIG instance as the workloads get
larger in Figures 3a-4a.
Going over to the collocated runs, comparing across the

different collocation mechanisms on Figures 2a-4a reveals
that MIG-based collocation performs better as the degree
of parallelism increases (especially to 7). MPS reveals itself
as a clear winner, offering the best performance across the
board. In contrast, naïve collocation is the least effective. We
attribute the superior performance ofMPS to its more flexible
resource management allowing more effective collocation
(as Section 3.3 also shows) and the lower compute resources
that are available to MIG (Section 2.1).

As expected, collocation impacts the time it takes to train
the individual models due to interference across the col-
located runs. Additionally, as the degree of collocation in-
creases, so does the total time to train the models. On the
other hand, multiple models finish training simultaneously,
increasing training throughput. For example, except for the
large workloads, 2-way collocation delivers two models in
roughly the same time as no-collocation delivers one model.
3-way collocation with MPS and MIG leads to a 50-110%
increase in time per epoch compared to non-collocated case
while delivering three model training runs instead of one.
7-way collocation with MPS and MIG only increases the
runtime 2X-2.5X for our smallest workload (Figure 2) while
delivering 7 models in parallel. These results clearly show
that collocation is valuable when a single training run is not
large enough for the available GPU compute and memory
resources; e.g., the small and medium cases.
However, the picture shifts considerably with the large

workloads (Figure 4). We no longer see improvements for
all of the collocated runs. MPS remains strong and is the
only form of collocation that remains beneficial in terms of
throughput. Under naïve collocation, one epoch of training
takes roughly as long as training the models in sequence
without collocation. MIG fairs a little better under 2-way
collocation, but is not advantageous. Additionally, 3-way
2A larger set of results can be found in our longer report [24].

83

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

0

5

10

15

20

25

30

35

40
n

aï
ve

M
P

S
7

g.
4

0
gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(s
e

co
n

d
s)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c)Memory footprint

Figure 2. Small: ResNet26 + Cifar10 (batch size = 128).

0

10

20

30

40

50

60

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(m
in

u
te

)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c)Memory footprint

Figure 3. Medium: EfficientNet_s + ImageNet64 (batch size = 128).

0

0.5

1

1.5

2

2.5

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

se
ri

al

1X 2X

Ep
o

ch
 T

im
e

(h
o

u
r)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

1X 2X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0
5

10
15
20
25
30
35
40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

1X 2X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c)Memory footprint

Figure 4. Large: CaiT + ImageNet (batch size = 128).

and 7-way collocation becomes impossible due to memory
constraints.

3.2.2 GPU utilization. We use SM Activity to track GPU
utilization, [35], which is reported by the dcgm tool [19].
For the small case and 7-way collocation, the benefits of col-
location become very visible. With ResNet’s embarrassingly
parallel nature and the larger batch size allowing even more
parallelism, high utilization of the GPU compute resources
is achieved without overloading the GPU (Figure 2b). The
medium case reflects the same pattern, though starts hitting
compute resource boundaries under 7-way collocation, as
seen in Figure 3b. As a result, collocation provides consider-
able benefits for the small and medium cases with MIG and

especially with MPS. For the large case (Figure 4b), there is
little variety in the GPU utilization across different cases.

3.2.3 GPU memory footprint. Finally, Figures 2c-4c re-
port the aggregatememory footprint on the GPU for differ-
ent collocationmethods for eachworkload.We use nvidia-smi
to collect the memory consumption for the whole GPU af-
ter a full epoch of training to signify how much memory
is needed for the model to train. The figures demonstrate
that the increase in memory footprint with collocation is
proportional to the degree of collocation. This is an expected
result as the models are not sharing data across collocated
runs in these experiments.

Notably, MIG collocation shows slightly smaller memory
footprints than the two other options, which prompted us to

84

An Analysis of Collocation on GPUs for
Deep Learning Training EuroMLSys ’24, April 22, 2024, Athens, Greece

0
50

100
150
200
250
300

0 10 20 30 40 50 60

R
ec

ei
ve

d
 (

M
B

)

Time (second)

1X 2X 3X 7X

(a) Naïve

1
4

16
64

256
1024
4096

16384

0 5 10 15 20 25 30

R
ec

ei
ve

d
 (

M
B

)

Time (second)

1x 2x 3x 7x

(b) Multi-Process Service

Figure 5. Traffic from CPU to GPU during the second epoch
of ResNet26 + Cifar10 (batch size 32) training.

0

5

10

15

20

n
aï

ve

M
P

S

4
g.

2
0

gb

7
g.

4
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

En
e

rg
y

(K
J)

Collocation option, # of collocated models (top to bottom)

Figure 6. GPU energy consumption to complete the 2nd
epoch of ResNet26 + Cifar10 (batch size 32) training.

delve deeper into PyTorch’s memory allocation. We discov-
ered that PyTorch adjusts the memory footprint depending
on the total available memory, which is less in the case of
non-7g.40gb MIG instances compared to whole GPU mem-
ory available under MPS and naïve. Switching the memory
allocator backend from PyTorch’s native implementation
to CUDA’s built-in asynchronous allocator removes the dif-
ferences in the memory footprint of different collocation
methods. However, we do not recommend this switch as it
slows down the training process.

3.2.4 Interconnect Traffic. Figure 5 reports the amount
of bytes received over time by the GPU measured by dcgm’s
pcie_rx_bytes. We compare naïve and MPS collocation
during the second epoch of small ResNet training with batch
size 32. We pick this small case as it benefits greatly from
collocation and can highlight the differences across the collo-
cation scenarios more effectively. MIG is omitted here due to
dcgm not providing the readings for this metric under MIG
as a result of the GPU being split into multiple instances.

For lower degrees of collocation, naïve collocation leads
to a linear increase in data transferred over PCIe from CPU
to GPU with respect to degree of collocation. On the other
hand, for the 7-way case, there is less work being done per
unit of time for each training run leading to sub-linear PCIe
traffic. This is likely caused by the throughput benefits of
collocation taking a huge hit under naïve collocation, as
shown in Section 3.2.1. In contrast, MPS exhibits a super-
linear increase in PCIe utilization when collocating models.
In addition to the data transfers for the collocated runs, MPS
increases the kernel launch processes since it is able to elim-
inate false dependencies and share the GPU resources more
effectively across the collocated kernels (Section 2.1).

3.2.5 EnergyConsumption. Finally, we look at the power
usage andGPU energy consumption using dcgm’s power_usage
(watts) and total_energy_consumption (joules), respec-
tively, for the small ResNet training. Figure 7 shows that
collocation scenarios that are highly effective may run on
higher power but finish much quicker. This is due to higher
GPU utilization under MPS and MIG. MIG exhibits signif-
icantly lower wattage under 7-way collocation than MPS
while training slightly slower. The benefits of this can be
seen in Figure 6, which reports the total GPU energy con-
sumption of the second epoch of the model training. While
requiring higher power usage per unit of time, MPS spends
less energy compared to naïve collocation thanks to finish-
ing training faster. While not as fast as MPS, MIG in general
exhibits the lowest GPU energy footprint.

3.3 Mixed Workloads
So far, we focused on homogeneous collocation scenarios.
Such cases can be extremely useful in practice when a data
scientist is performing hyper-parameter tuning to come up
with the ideal set of parameters for a model repeatedly run-
ning the same model with a different set of parameters. On
the other hand, there is also value in investigating non-
homogeneous collocation scenarios to observe what happens
when individual training runs stress the GPU unequally.

We select combinations of small, medium, and large ResNet
models with corresponding dataset sizes to collocate het-
erogeneously (as listed in Table 1). For the MIG workloads,
these run on 1g.5gb, 2g.10gb and 4g.20gb, respectively.
We opted to keep a static MIG configuration in this exper-
iment since in a real-world scenario, e.g., in a data center,
the MIG partitions would already be set and reallocating
resources after each training run could be impractical.
Figure 8 details the total execution time for training the

collocated models using the different collocation methods
in comparison to training them back to back, serial, without
collocation. We see that the benefits of collocation vary heav-
ily across workloads. For larger workloads such as "S+M+M"
and "S+S+M+M", naïve and MPS collocation provide size-
able benefits by training the small model without impacting

85

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

0
50

100
150
200
250
300

0 5 10 15 20 25 30 35 40 45 50 55 60

Po
w

er
 (

W
)

Time (second)

1X 2X 3X 7X

(a) Naïve

0
50

100
150
200
250
300

0 5 10 15 20 25 30

Po
w

er
 (

W
)

Time (second)

1x 2x 3x 7x

(b) Multi-Process Service

0
50

100
150
200
250
300

0 5 10 15 20 25 30 35

Po
w

er
 (

W
)

Time (second)

1X - 40GB 1X - 20GB 2X 3X 7X

(c) Multi-Instance GPU

Figure 7. GPU power usage during the second epoch of ResNet26 + Cifar10 (batch size 32) training.

0

5

10

15

20

25

30

Ex
ec

u
ti

o
n

 T
im

e
(m

in
u

te
) Naïve MPS MIG Serial

0

25

50

75

100

125

150

175

200

225

S + L M + L

Ex
ec

u
ti

o
n

 T
im

e
(m

in
u

te
)

Figure 8. Time for training mixed vision workloads with &
without (serial) collocation for two epochs.

the medium one. In general, the flexibility of both naïve
collocation and MPS is a great advantage here over MIG.
Figure 9 dives deeper into the "S+M+M+M" workload

to observe how the GPU utilization and memory footprint
changes over time during collocated runs with naïve, MPS,
and MIG collocation. We pick this mix as it is the one that
utilizes MIG instances the best. The GPU utilization under
MIG gets lowered after the small model finishes, since MIG is
unable to fill-up the corresponding instance with more work.
On the other hand, naïve and MPS are able to keep similar
GPU utilization throughout. In contrast, the memory foot-
print follows a similar trend for all collocation strategies. It is
higher in the beginning as all four models are training. The
values then drop off quickly once the small model finishes.

Furthermore, to investigate the impact of collocatingmixed
workloads that stress different hardware resources, we show
the results of collocating a recommender model with a large
vision model training in Table 2. We configure two 3gMIG
compute instances to share memory as the recommender
model does not fit into the memory of smaller GPU instances.

Adding a memory-heavy model such as the recommender
greatly promotes collocation. While the training time for
individual runs increase slightly, the total time to finish the
whole workload gets reduced by 5-10%. Furthermore, one can
collocate more compute-intensive models such as ResNet152
together with the Recommender model after the first ResNet
training completes. As before, memory consumption roughly
corresponds to the sum of both models. However, GPU uti-
lization does not increase. Under MIG, unfortunately, only
part of the computing power of the GPU can be assigned to
ResNet, even though the recommender requires little.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

SM
A

C
T

Time (second)

naïve MPS MIG

(a) Streaming Multiprocessor Activity (SMACT)

0

10

20

30

40

0 200 400 600 800 1000 1200M
em

o
ry

 F
o

o
tp

ri
n

t
(G

B
)

Time (second)

naïve MPS MIG

(b) Memory footprint

Figure 9. GPU utilization and memory footprint over time
for S+M+M+M from Figure 8.

3.4 Summary & Collocation Guidelines
Based on the results we covered, we now provide some guide-
lines for deep learning training collocation.
• Workload collocation is highly beneficial when the ag-
gregate compute and memory needs of the collocated
deep learning training runs fit the GPU.

• Collocation gives diminishing returns when the GPU
utilization of an individual run is already close to 100%.

• The aggregate memory footprint of the collocated runs
can effectively be estimated by the sum of the memory
footprints of the individual runs and cannot exceed the
available memory on the GPU.

• MPS achieves better performance across the board thanks
to its flexible distribution of hardware resources among
the collocated runs. On the other hand, it requires higher
interconnect bandwidth.

• MIG can support collocation effectively when a strict
separation is required among the runs thanks to its rigid
partitioning even though this partitioning leads to sub-
optimal performance compared to MPS. Furthermore,
MIG exhibits higher energy efficiency on GPUs when
the instances are configured well for the workload.

86

An Analysis of Collocation on GPUs for
Deep Learning Training EuroMLSys ’24, April 22, 2024, Athens, Greece

Table 2. Mixed collocation of memory-intensive recom-
mender and compute-intensive visionmodels. Recommender
time is for one training block plus validation. ResNet time
is for one epoch. The reported decrease in total time (%) is
relative to the sequential run.

Collocation Time (h) GPU Util. Memory (GB)Recom. ResNet Total
Recom. (no-colloc) 5.36 - 6.41 5% 29.14

ResNet152 (no-colloc) - 1.05 82% 8.47
Naïve 6.09 1.11 6.09 (-5%) 81% 37.75
MPS 5.57 1.10 5.57 (-13%) 81% 37.62

MIG (shared) 5.60 1.40 5.60 (-13%) 39% 37.86

4 Conclusion
In this paper, we provide a performance characterization on
a modern GPU device that has support for multiple means of
GPU collocation: naïve, MPS, and MIG. Our results demon-
strate that GPU collocation is highly beneficial for small-
and medium-sized workloads that cannot fully saturate the
whole GPU. Although per-model training is overall slower,
parallel execution of workloads can utilize GPU resources
more effectively, increasing training throughput. MIG no-
tably requires a rigid setup while providing full isolation
across its instances.
If the workload across the instances is imbalanced, runs

that finish early will leave some instances idle, unless there
is other work that could be allocated over those instances.
Naïve collocation and MPS, on the other hand, can utilize the
resources released by the finished work, increasing the train-
ing performance of models that require more time to train.
In general, MPS provides the best collocation performance,
if not the most energy efficient.

In this work, we limited our focus to training on a single
GPU since NVIDIA does not allow multi-GPU training with
MIG. we limited our focus to training on a single GPU since
NVIDIA does not allow multi-GPU training with MIG. In
a data center, many workloads can be collocated not only
on the same GPU but also on the same server. Therefore,
studying the impact of collocation while running other work-
loads on other GPUs on the same device would be interesting
future work. Furthermore, considering the results with the
recommender model, further investigations of the shared
memory instances of MIG would be worthwhile.

Acknowledgements
This work is funded by the Independent Research Fund Den-
mark’s (Danmarks Frie Forskningsfond; DFF) Sapere Aude
program under grant agreement number 0171-00061B and
Inge Lehman program under grant agreement number 0171-
00062B. We also thank DASYA lab members at IT University
of Copenhagen for their support, and the reviewers of Eu-
roMLSys for their constructive feedback.

References
[1] [n.d.]. GPU Pro Tip: CUDA 7 Streams Simplify Concurrency.

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-
simplify-concurrency/. Accessed: 2022-10-21.

[2] Sebastian Baunsgaard, Sebastian Benjamin Wrede, and Pınar Tözün.
2020. Training for Speech Recognition on Coprocessors. In ADMS.

[3] Mehmet E. Belviranli, Farzad Khorasani, Laxmi N. Bhuyan, and Rajiv
Gupta. 2016. CuMAS: Data Transfer Aware Multi-Application Schedul-
ing for Shared GPUs. In Proceedings of the 2016 International Conference
on Supercomputing (ICS ’16). Association for Computing Machinery,
Article 31, 12 pages.

[4] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2017. A Down-
sampled Variant of ImageNet as an Alternative to the CIFAR datasets.
CoRR arXiv (2017).

[5] Criteo. [n.d.]. Criteo 1TB Click Logs dataset. https:
//www.criteo.com/news/press-releases/2015/07/criteo-releases-
industrys-largest-ever-dataset/.

[6] Hongwen Dai, Zhen Lin, Chao Li, Chen Zhao, Fei Wang, Nanning
Zheng, and Huiyang Zhou. 2018. Accelerate GPU Concurrent Kernel
Execution by Mitigating Memory Pipeline Stalls. In 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
208–220.

[7] Sina Darabi, Negin Mahani, Hazhir Baxishi, Ehsan Yousefzadeh-Asl-
Miandoab, Mohammad Sadrosadati, and Hamid Sarbazi-Azad. 2022.
NURA: A Framework for Supporting Non-Uniform Resource Accesses
in GPUs. Proc. ACM Meas. Anal. Comput. Syst. 6, 1 (feb 2022).

[8] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In ASPLOS. 127–144.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In CVPR. 770–778.

[10] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center. In NSDI. 295–308.

[11] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). 947–960.

[12] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo
Mai, Paolo Costa, and Peter Pietzuch. 2019. Crossbow: Scaling Deep
Learning with Small Batch Sizes on Multi-GPU Servers. PVLDB 12, 11
(2019), 1399–1412.

[13] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny
images. Technical Report. University of Toronto.

[14] Baolin Li, Viiay Gadepally, Siddharth Samsi, and Devesh Tiwari. 2022.
Characterizing Multi-Instance GPU for Machine Learning Workloads.
In 2022 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW). 724–731.

[15] Baolin Li, Tirthak Patel, Siddarth Samsi, Vijay Gadepally, and Devesh
Tiwari. 2022. MISO: Exploiting Multi-Instance GPU Capability on
Multi-Tenant GPU Clusters. In ACM SoCC.

[16] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. 2019. Deep Learning Recommendation Model for Person-
alization and Recommendation Systems. CoRR abs/1906.00091 (2019).
https://arxiv.org/abs/1906.00091

[17] Konstantinos Nikas, Nikela Papadopoulou, Dimitra Giantsidi, Vasileios
Karakostas, Georgios Goumas, and Nectarios Koziris. 2019. DICER:
Diligent Cache Partitioning for Efficient Workload Consolidation. In
ICPP.

87

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://arxiv.org/abs/1906.00091

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

[18] NVIDIA 2021. NVIDIA Multi-Instance GPU User Guide. NVIDIA. https:
//docs.nvidia.com/datacenter/tesla/mig-user-guide/.

[19] NVIDIA. 2022. Data Center GPU Manager Documentation. Technical
Report. NVIDIA. https://docs.nvidia.com/datacenter/dcgm/latest/
dcgm-user-guide/.

[20] NVIDIA. 2022. Multi-Process Service. Technical Report. NVIDIA Cor-
poration. https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_
Service_Overview.pdf

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32. 8024–8035.

[22] Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and Srimat Chakrad-
har. 2011. Supporting GPU Sharing in Cloud Environments with a
Transparent Runtime Consolidation Framework (HPDC ’11). Associa-
tion for Computing Machinery, 217–228.

[23] Ties Robroek, Aaron Duane, Ehsan Yousefzadeh-Asl-Miandoab, and
Pinar Tözün. 2023. Data Management and Visualization for Bench-
marking Deep Learning Training Systems. In Proceedings of the Sev-
enth Workshop on Data Management for End-to-End Machine Learning,
DEEM 2023, Seattle, WA, USA, 18 June 2023. ACM, 1:1–1:5. https:
//doi.org/10.1145/3595360.3595851

[24] Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, and Pınar Tözün.
2023. An Analysis of Collocation on GPUs for Deep Learning Training.
arXiv:2209.06018 [cs.LG]

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. IJCV 115, 3 (2015), 211–252.

[26] Mingxing Tan and Quoc V. Le. 2021. EfficientNetV2: Smaller Models
and Faster Training. CoRR abs/2104.00298 (2021). arXiv:2104.00298
https://arxiv.org/abs/2104.00298

[27] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Syn-
naeve, and Hervé Jégou. 2021. Going deeper with image transformers.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 32–42.

[28] Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li, and Gennady
Pekhimenko. 2021. Horizontally Fused Training Array: An Effective
Hardware Utilization Squeezer for Training Novel Deep Learning
Models. Proceedings of Machine Learning and Systems 3 (2021), 599–
623.

[29] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. 2016. Simultaneous Multikernel GPU: Multi-
tasking throughput processors via fine-grained sharing. In 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 358–369.

[30] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. 2017. Quality of service support for fine-
grained sharing on GPUs. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). 269–281.

[31] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in
the Wild: Workload Analysis and Scheduling in Large-Scale Heteroge-
neous GPU Clusters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). USENIX Association, 945–960.
https://www.usenix.org/conference/nsdi22/presentation/weng

[32] Ross Wightman. 2019. PyTorch Image Models. https://github.com/
rwightman/pytorch-image-models.

[33] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali
Annavaram. 2016. Warped-Slicer: Efficient Intra-SM Slicing through
Dynamic Resource Partitioning for GPU Multiprogramming. In 2016

ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA). 230–242.

[34] Gingfung Yeung, Damian Borowiec, Renyu Yang, Adrian Friday,
Richard Harper, and Peter Garraghan. 2022. Horus: Interference-Aware
and Prediction-Based Scheduling in Deep Learning Systems. IEEE
Transactions on Parallel and Distributed Systems 33, 1 (2022), 88–100.
https://doi.org/10.1109/TPDS.2021.3079202

[35] Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, and Pinar Tözün.
2023. Profiling and Monitoring Deep Learning Training Tasks. In
Proceedings of the 3rd Workshop on Machine Learning and Systems,
EuroMLSys 2023, Rome, Italy, 8 May 2023, Eiko Yoneki and Luigi Nardi
(Eds.). ACM, 18–25. https://doi.org/10.1145/3578356.3592589

[36] Xia Zhao, Zhiying Wang, and Lieven Eeckhout. 2018. Classification-
Driven Search for Effective SM Partitioning in Multitasking GPUs. In
Proceedings of the 2018 International Conference on Supercomputing.
65–75.

88

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-user-guide/
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-user-guide/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://doi.org/10.1145/3595360.3595851
https://doi.org/10.1145/3595360.3595851
https://arxiv.org/abs/2209.06018
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2104.00298
https://www.usenix.org/conference/nsdi22/presentation/weng
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.1109/TPDS.2021.3079202
https://doi.org/10.1145/3578356.3592589

An Analysis of Collocation on GPUs for
Deep Learning Training EuroMLSys ’24, April 22, 2024, Athens, Greece

0

20

40

60

80

100

120

140
n

aï
ve

M
P

S
7

g.
4

0
gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(s
ec

o
n

d
)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
o

n
 (

G
B

)

Collocation option, # of collocated models (top to bottom)

(c)Memory footprint

Figure 10. Small: ResNet26 + Cifar10 (batch size = 32).

0

20

40

60

80

100

120

140

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(s
e

co
n

d
)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c)Memory footprint

Figure 11. Small: EfficientNet_s + Cifar10 (batch size = 128).

0

20

40

60

80

100

n
aï

ve
m

p
s

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(m
in

u
te

)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c)Memory footprint

Figure 12. Medium: ResNet50 + ImageNet64 (batch size = 32).

0

5

10

15

20

25

30

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(m
in

u
te

s)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c)Memory footprint

Figure 13.Medium: ResNet50 + ImageNet64 (batch size = 128).

89

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

0

0.5

1

1.5

2

2.5

3

3.5

4
n

aï
ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

se
ri

al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

1X 2X 3X

Ep
o

ch
 T

im
e

(h
o

u
r)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

1X 2X 3X

U
ti

liz
at

o
in

Number of models, collocation option (bottom to top)

mean max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

1X 2X 3X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c)Memory footprint

Figure 14. Large: ResNet152 + ImageNet (batch size = 32).

A Additional Uniform Collocation Results
As part of our investigation of the collocation mechanisms,
we have also experimented with varying the batch size and

tested out additional model and dataset combinations.We are
sharing the results from those experiments in this appendix
for completeness in Figures 10-14, even though they do not
change the key conclusions of this paper.

90

	Abstract
	1 Introduction
	2 Background
	2.1 Collocation on GPUs
	2.2 Related work

	3 Impact of Collocation
	3.1 Setup & Methodology
	3.2 Uniform Collocation
	3.3 Mixed Workloads
	3.4 Summary & Collocation Guidelines

	4 Conclusion
	References
	A Additional Uniform Collocation Results

