Profiling & Monitoring Deep Learning Training Tasks

Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, Pinar Tozuin
IT University of Copenhagen, Copenhagen, Denmark

ehyo,titr,pito@itu.dk

Abstract

The embarrassingly parallel nature of deep learning train-
ing tasks makes CPU-GPU co-processors the primary com-
modity hardware for them. The computing and memory
requirements of these tasks, however, do not always align
well with the available GPU resources. It is, therefore, im-
portant to monitor and profile the behavior of training tasks
on co-processors to understand better the requirements of
different use cases. In this paper, our goal is to shed more
light on the variety of tools for profiling and monitoring deep
learning training tasks on server-grade NVIDIA GPUs. In ad-
dition to surveying the main characteristics of the tools, we
analyze the functional limitations and overheads of each tool
by using a both light and heavy training scenario. Our results
show that monitoring tools like nvidia-smi and dcgm can
be integrated with resource managers for online decision
making thanks to their low overheads. On the other hand,
one has to be careful about the set of metrics to correctly
reason about the GPU utilization. When it comes to profiling,
each tool has its time to shine; a framework-based or system-
wide GPU profiler can first detect the frequent kernels or
bottlenecks, and then, a lower-level GPU profiler can focus
on particular kernels at the micro-architectural-level.

CCS Concepts: - Computing methodologies — Artificial
intelligence; Machine learning; « Hardware; « Computer
systems organization — Parallel architectures;

Keywords: deep learning, co-processors, monitoring, profil-
ing, optimization

ACM Reference Format:

Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, Pinar Toziin. 2023.
Profiling & Monitoring Deep Learning Training Tasks. In 3rd Work-
shop on Machine Learning and Systems (EuroMLSys "23), May 8, 2023,
Rome, Italy. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3578356.3592589

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroMLSys °23, May 8, 2023, Rome, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0084-2/23/05...$15.00
https://doi.org/10.1145/3578356.3592589

1 Introduction

Deep learning training requires high computing and memory
resources and is a highly parallel process. This has naturally
lead to accelerating the training processes with hardware
architectures such as GPUs that can exploit these traits. On
the other hand, matching the computing and memory re-
quirements of deep learning training to the capabilities of
modern GPUs is not straightforward for all deep learning
applications and GPU types. This mismatch results in slow-
downs and resource underutilization [14, 19, 23, 36]. To find
solutions to these challenges, it is essential to characterize
the interaction between deep learning systems and their un-
derlying hardware. This is obtainable by profiling systems
and monitoring hardware utilization.

Profiling provides the developers with insights in how
the application behaves in terms of computing and memory
patterns and requirements. Afterwards, the data and trace
plots can assist in finding and addressing the bottlenecks.
Monitoring tools, in contrast, reveal how specific hardware
resources react to the execution of applications. One can find
out whether the current configuration of the model train-
ing saturates the hardware resources. The workload can be
scaled up or more applications may be run simultaneously to
optimize for both high utilization and training performance.

Using profiling and monitoring tools effectively is an art
and can be time-consuming for beginners. Furthermore, in
the field of deep learning, one has to understand the tools
for not only CPUs but also accelerators like GPUs. While
there are many works utilizing tools for CPUs (e.g., top, perf,
Intel VTune) for workload characterization [13, 15, 17, 21,
22, 32, 34, 35], tools for accelerators are less mature and
rapidly evolving, and relatively unexplored. To address this
challenge, this paper reviews the most relevant profiling and
monitoring tools for deep learning workloads. We investigate
the strengths and limitations of the profiling tools offered
by NVIDIA, Nsight Systems and Compute, in addition to the
monitoring tools nvidia-smi and dcgm. We do this by (1)
surveying the functionality offered by these tools, (2) study-
ing the metrics reported and showing the shortcomings of
widely used high-level utilization metrics, and (3) measur-
ing profiling and monitoring tools’ overheads while running
both light and heavy deep learning training scenarios.

Our investigation demonstrates the following:

o The negligible overhead of the monitoring tools make
them ideal candidates to be integrated into task sched-
ulers and resource managers for online decision-making.


https://doi.org/10.1145/3578356.3592589
https://doi.org/10.1145/3578356.3592589
https://doi.org/10.1145/3578356.3592589

EuroMLSys ’23, May 8, 2023, Rome, Italy

e On the other hand, the GPU utilization and GRACT
metrics offered by nvidia-smi and dcgm, respectively,
are too high-level and unrepresentative for actual GPU
utilization. More concrete metrics such as SMACT and
SMOCC from dcgm may help to overcome this issue.

e The profiling tools are effective for targeted code opti-
mizations, but their overheads make them unsuitable for
online decision making. The profiling mode of Nsight
Compute in particular heavily disrupts a training run.

e Each profiling tool has their time to shine. Profiling tools
integrated into deep learning frameworks and Nsight Sys-
tems offer a way to detect bottlenecks with application-
specific and system-wide views, respectively. However,
to further optimize individual kernels, a tool like Nsight
Compute offer deeper insights at the micro-architectural
level of a GPU. Thus, one can create a pipeline of profiling
stages using a mix of tools.

2 Tools

This section surveys the most relevant profiling and moni-
toring tools for deep learning training on NVIDIA GPUs.

2.1 Profiling Tools

There is a range of tools available to profile deep learning
workloads. Tools integrated with the deep learning frame-
works, such as the TensorFlow and PyTorch profilers [8, 10],
are immediately available to those using their respective
frameworks. Alternatively, NVIDIA provides the profiling
tools Nsight Systems and Nsight Compute. This section goes
over the PyTorch profiler, as a representative framework tool,
and the NVIDIA profiling tools.

The PyTorch Profiler [8] is a trace-based profiling tool
that can automatically collect a range of performance met-
rics during both deep learning training and inference. As it is
integrated into the deep learning framework itself, running
the profiler is just a matter of adding a few lines of Python
code. It requires less setup than other monitoring or profil-
ing tools due to being specific to PyTorch and deep learning.
Being integrated into the code, the profiler allows for exten-
sive control of which iterations are profiled. This prevents
the profiling data from growing out of hand. It is in fact
recommended that the users profile one or more iterations
in an epoch rather than whole epochs, since the behavior
of the iterations over each batch tends to be repetitive. In
Section 3, we highlight this while discussing the overheads
of the PyTorch profiler.

NVIDIA Nsight Systems [4], nsys, is a trace-based pro-
filer similar to the PyTorch profiler. It constructs a timeline
of CPU and GPU events. This notably includes different
compute and memory access streams on the GPU, yield-
ing valuable information such as data movement bottle-
necks and most frequently used kernels. nsys is framework-
independent and can effectively profile a variety of software.

Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, Pinar Téziin

Furthermore, it offers a system-wide view, including more
insights to interactions with the operating system and net-
work compared to the more application-focused view given
by the framework profilers. nsys, thus, does not annotate the
deep learning traces out of the box. NVTX, NVIDIA Tools
Extension [7], provides an API to enable annotating the train-
ing code itself. Multiple deep learning libraries, including
PyTorch [28], support NVTX annotations in their code.

nsys runs as a separate process while profiling an appli-
cation. Applications can be profiled both online/interactive
and offline. The profiling is done either via a GUI or a com-
mand line with the level of detail specified by the user. For
example, a user can launch nsys to track the GPU memory
usage by kernels, enable the collection of backtraces, and
collect metrics from network interface cards.

Bottlenecks can be detected by viewing the timeline of
computing and memory operations. For example, a time-
line detailing that 90% of the time is spent on compute
indicates that the workload is compute-intensive and that
compute-side optimizations might improve the application.
Conversely, when there are a lot of data access stalls, the
workload is memory-intensive and improved data orchestra-
tion may greatly improve runtime.

It should be noted that nsys does not work when multi-
instance GPU (MIG) mode [27, 29], which divides a GPU into
smaller instances, is enabled on any GPU on the server. While
this is a current functional limitation as MIG technology
is relatively new and has been maturing, it may be fixed
over time. In addition, carelessly specifying more and more
profiling options to get more details can result in longer
post-processing times after the profiling is over and bigger
trace files that are harder to render in the tool’s GUL

NVIDIA Nsight Compute [3], ncu, allows for in-depth
GPU analysis. It disrupts the regular run of a program and
reruns the kernels of a program multiple times to trace the
micro-architectural behavior.

Similar to nsys, ncu has a GUI-based and command line in-
terface, where the users can specify the amount information
to trace. As the nature of the profiling is disruptive, it is often
run as an online interactive profiler and debugger, though
offline mode is also supported. Compared to the PyTorch
Profiler and nsys, the main strength of ncu is the degree
of detail and granularity it provides when profiling. It illus-
trates the data movement behavior across the different levels
of the GPU memory hierarchy and helps to identify data
stalls in kernels. It also maps the metrics to the individual
lines of code that contribute to them by connecting assembly
(SASS) code with parallel thread execution instruction set
architecture (PTX or NVPTX), an architecture independent
intermediate representation for CUDA, and with high-level
code (e.g., CUDA, C/C++, Fortran, OpenACC, Python). Addi-
tionally, it can export CUDA execution graphs and allow the
profiling of individual nodes in these graphs.



Profiling & Monitoring Deep Learning Training Tasks

While ncu is good to investigate things at a microscopic
level, it does impact application behavior. Its profiling de-
pends on the principle of rerunning kernels multiple times
either one kernel at a time (kernel mode) or via iterating over
the application multiple times (application mode) as spec-
ified by the user. In each iteration, additional data for the
target kernel(s) is collected. Application replay requires the
program execution to be deterministic.

While ncu provides extremely detailed information at the
kernel level, it is often difficult to map the information to the
application level. Furthermore, as a result of the repetitive
kernel runs, the profiling overhead on the application is
very high. Therefore, ncu should mainly be used to optimize
individual kernels, not application-level scheduling behavior.
Since it supplies the users with GPU architecture and micro-
architecture-related information, it is extremely useful for
computer architects and low-level library developers.

2.2 Monitoring Tools

There are a variety of monitoring tools for servers to observe
their utilization behavior such as how many CPU cores are
in use, how many GPU streaming multiprocessors are active,
what the CPU/GPU memory consumption is, etc. Such obser-
vations can aide cluster administration, hardware resource
management, and workload scheduling decisions, even in
real-time thanks to the low-overhead of the monitoring tools
(as quantified in Section 3.2.2). On the other hand, in contrast
to the profiling tools, these tools cannot be used for coming
up with optimization ideas for a specific application’s inter-
nals or kernels. In this section, we cover the two monitoring
tools offered by NVIDIA: nvidia-smi and dcgm.

NVIDIA System Management Interface [5], nvidia-
smi, provides monitoring and management capabilities for
NVIDIA GPUs. Users can interact with it via command line to
(1) configure a GPU’s performance parameters like changing
the frequency, setting power cap, etc., (2) set the preferred
multi-instance GPU (MIG) partitions, and (3) track a range
of performance metrics such as GPU utilization, size of GPU
memory usage, performance state and temperature of a GPU,
etc. One can view the metrics tracked via standard output
or write them to a CSV or XML file. These metrics can be
tracked system-wide, for a GPU, and for an application.

Underneath, nvidia-smi uses the NVIDIA Management
Library (NVML) [2], which provides an API for monitoring
and managing various states of NVIDIA GPUs. NVML pro-
vides direct access to the queries and commands that enables
the monitoring done by nvidia-smi. If users want to cus-
tomize the monitoring, they can write a custom program us-
ing NVML instead of using what is exposed by nvidia-smi.

While nvidia-smi helps with basic system monitoring, it
is still limited in terms of the metrics it provides. For example,
it doesn’t track the interactions between the CPU and the
GPU. Furthermore, on a MIG-enabled GPU, it tracks metrics
from the whole GPU and not from individual MIG instances.

EuroMLSys ’23, May 8, 2023, Rome, Italy

Table 1. Specifications of an A100 GPU - 40GB

Property Value

GPU Architecture NVIDIA Ampere
Compute Capability 8.0

#SMs 108

FP32 per SM 64

Tensor Cores per SM 4

192KB combined, Shared
Share Memory and L1 cache | Memory is configurable

up to 164KB
Max 32-bit Registers per SM | 64KB
L2 cache 40MB
40 GB of high-speed
Memory HBM2 memory
Max Threads per Warp 32
Max Thread Blocks per SM | 32
Max Warps per SM 64
Max Thread Block Size 1024

Max Registers per Thread 255

NVIDIA Data Center GPU Manager [1], dcgm, pro-
vides more detailed information about hardware utilization
on CPU-GPU co-processors compared to nvidia-smi. dcgm
can ease the management and configuration of GPUs in a
cluster by providing features such as GPU grouping. Fur-
thermore, it can track not just high-level GPU utilization,
but also occupation and activity of streaming multiproces-
sors and utilization of tensor cores. It can give more detailed
insights on energy consumption of the GPU and the data
movement across CPU and GPU and different GPUs by re-
porting how much the PCle / NVLink bandwidth is used.
Finally, it can also monitor the utilization of the individual
MIG instances. On the other hand, since both ncu and dcgm
use the same hardware counters underneath, they cannot be
used simultaneously.

3 Experiments

After the qualitative overview of the tools of interest in
Section 2, this section quantitatively analyzes them. We aim
at answering the following questions with our experiments:

e What is the granularity of information reported by the
different GPU utilization metrics?

e How intrusive are these tools on the execution of a deep
learning training process?

o How much hardware resources do these tools need?

o How does the relative impact of these tools change based
on the size and complexity of the deep learning training?

3.1 Setup

All the experiments are run on a DGX Station A100, which is
composed of an AMD EPYC 7742 CPU with 512GB of main



EuroMLSys ’23, May 8, 2023, Rome, Italy

Utilization

1 128 512 1024
#tthreads (upper), #thread_blocks (lower)

Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, Pinar Téziin

X==GRACT mean

@ GRACT max

*-==SMACT mean
e SMACT max
== SMOCC mean

—— SMOCC max

==0==GPU Utilization mean

=== GPU Utilization max

2048 4096 8192

Figure 1. Different GPU utilization metrics as the load on the GPU varies.

memory and four A100 GPUs with 40GB of memory each.
Table 1 details the specifications of the A100 GPU.

The system runs DGX OS, a variant of Ubuntu 20.04.4 LTS,
and the installed CUDA version is 11.6.1.

Except for Section 3.2.1, the experiments are based on
two types of training runs: (1) a light use-case with a simple
CNN-model [25] trained on the MNIST [16] dataset, (2) a
more heavy use-case in both computation and memory con-
sumption with ResNet50 [18, 37] trained on the ImageNet
dataset [30]. All models use the PyTorch framework, version
1.13.1, and are trained for 5 epochs. For the experiments in
Section 3.2.1, where the different GPU utilization metrics are
investigated, we create our custom micro-benchmark, which
is described in the corresponding section.

We scoped down the experiments to a single light and
heavy training scenario rather than experimenting with a
wider variety of model training. When it comes to identifying
the overhead caused by the tools, there can be two types of
overhead: (1) fixed one such as fixed startup or shutdown
overhead and fixed background resource usage, and (2) the
one that vary based on the program complexity such as
increased resource consumption due to more data being
collected. The former would be more pronounced for the
light training scenario, whereas it would be amortized or
insignificant for the heavy scenario. The latter would be more
significant for the heavy scenario. We argue that the overall
conclusions for the respective behavior for these two types
of overhead do not change across different light and heavy
scenarios. This aligns with our experience using different
training use cases with these profiling and monitoring tools.

For the profilers, we run our experiments offline with the
default settings. The PyTorch Profiler, pytorch, records both
CUDA and CPU activity by default, while all of the extra
options, such as flop estimation, are disabled. Running this
with the 5-epochs of ResNet50 leads to prohibitive tracing
information. Therefore, we only report pytorch results for
the light training scenario. The traces collected by nsys,
version 2022.1.3, are for CPU, CUDA, NVTX, OSRT, and
OpenGL calls, as well as high-level resource utilization, but

without CUDA backtracing. Finally, as ncu, version 2022.2.1,
is by design a disruptive profiler (Section 2.1), we decided
that it is not insightful to report its overheads.

The raw experimental data can be found in our repository.!

3.2 Results

Among the questions listed above, Section 3.2.1 answers the
first one, and Section 3.2.2 answers the remaining three.

3.2.1 GPU utilization. The popular metrics of interest
while monitoring GPUs tend to be compute utilization, mem-
ory consumption, data movement, and energy consumption.
Especially the GPU utilization can potentially be confusing
due to the different ways for measuring this activity.

The GPU monitoring tools nvidia-smi and dcgm both
have a GPU utilization metric, which is roughly defined as
the % of time one or more kernels were executing on the GPU
over the past sampling period. In addition, dcgm has multiple
metrics to track the utilization of streaming multiprocessors
(SMs). Most notable ones among these metrics are GRACT,
SMACT, and SMOCC, which we investigate in this section.

GRACT, graphics engine activity, is the fraction of time dur-
ing which any portion of the graphics (e.g., ray tracing units)
or compute engines were active. While GRACT tends to closely
follow GPU utilization in values, in practice it is measured
differently (sampling, hardware counters, etc.). Therefore,
its over time values aren’t exactly the same as what GPU uti-
lization reports. SMACT, SM activity, refers to the fraction of
active time on an SM, averaged over all SMs. Finally, SMOCC,
SM occupancy, is the degree of parallelism within an SM
(calculated by the unit of a warp, which typically occupies
32 threads in a thread block) relative to the maximum degree
of parallelism supported by the SM.

For our investigation, we devise a micro-benchmark in
which we vary the number of thread blocks and threads
within a thread block in a kernel.? Each thread fetches a data

Ihttps://github.com/Resource-Aware-Data-systems-RAD/PMDLT
https://github.com/Resource-Aware-Data-systems-
RAD/PMDLT/blob/main/benchmark/square.cu


https://github.com/Resource-Aware-Data-systems-RAD/PMDLT
https://github.com/Resource-Aware-Data-systems-RAD/PMDLT/blob/main/benchmark/square.cu
https://github.com/Resource-Aware-Data-systems-RAD/PMDLT/blob/main/benchmark/square.cu

Profiling & Monitoring Deep Learning Training Tasks

EuroMLSys ’23, May 8, 2023, Rome, Italy

100
g 801 — top r \
— top s /\ ++== nvidia-smi I \
- nvidia-smi E 60 / \ == dcgm I \
== dcgm = 401 / . —-' nsys i \
sl =TS P
pytOFCh 6 0 .’ \_—.,_’-\_,-—-./'\.N./'\_.-—._' "
100 150 200 250 0 10 20 30 40 50 60 70
Time (Sec) Time (Sec)
(a) Training processes while running light training. (b) Tool processes while running light training.
£ 500 107 — top
s c 125 - nvidia-smi
.g 400 .E 100 nvidia-smi
& 300 top 5 i :
= - nvidia-smi = 751 —=- nsys |
52009 __ degm S 50
2 )
100 .
5 ; nsys 5 22
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 12000
Time (Sec) Time (Sec)

(c) Training processes while running heavy training.

(d) Tool processes while running heavy training.

Figure 2. CPU Utilization.

item and calculates its square. Figure 1 shows the results. As
the figure highlights, even when there is only one thread
within a single thread block, GRACT can show a utilization
of 90%. This is extremely misleading when one is interested
in whether the SMs are in use. In contrast, SMACT and SMOCC
reveal substantially more information on SM utilization.

The GPU used in our experiments (Table 1) have support
for up to 3456 thread blocks in total, where each thread block
has support for up to 1024 threads in total. We see that SMACT
and SMOCC reach higher values as we get closer to the limits
of parallelism offered by the GPU, reflecting the actual load
on the SMs. Due to possible overheads in orchestrating the
threads, though, neither SMACT and SMOCC reach 100%.

In conclusion, one must be careful about the GPU utilization
metrics to monitor depending on the goal of monitoring. For
example, for a task scheduler that aims to decide which tasks
to collocate on a GPU, plainly looking at GPU utilization or
GRACT will miss the opportunities for utilizing the GPU better.

3.2.2 Tool Overheads. To quantify the overheads of the
tools described in Section 2, we measure the epoch execution
time, the size of the information produced by each tool, and
utilization of CPU and GPU resources with and without
using a particular tool. Since top [11] is used to collect CPU
utilization information, we also include it in the results.
Execution time. To reason about the runtime impact of
each tool, Table 2 reports the average epoch time. The execu-
tion time for each epoch is taken from PyTorch. As Table 2
shows, while the monitoring tools have negligible impact
on execution time, the profiling tools lead to a noticeable
overhead. Figure 2 reveals that there is bigger runtime over-
head for the profiling tools after the training is over, which is
for post-processing the gathered information, omitted from

Table 2. Average epoch time w/o profiling and monitoring,
and size of the information collected by the tools.

simple CNN ResNet50
Tools . .

Time ‘ Space Time ‘ Space
no tool 9.61sec | NA 37.06min | NA
top 9.66sec | ~20KB | 37.11min | ~2MB
nvidia-smi | 9.61sec | ~20KB | 37.04min | ~2MB
degm 9.68sec | ~85KB | 37.19min | ~8MB
nsys 9.88sec | ~40MB | 39.13min | ~5GB
pytorch 13.65sec | ~1.4GB NA

Table 2. The overhead of the pytorch profiler is larger, since
it collects more data by default compared to nsys.

Overall, while the monitoring tools can be integrated into
online decision making, the profiling tools should be used for
deliberate targeted investigations and optimizations.

Size of data files. Table 2 also reports the size of the infor-
mation collected by each tool. For the monitoring tools, we
manage how this information is stored, we simply write the
information to an output file. As expected, the information
collected by these tools have negligible overhead, and since
dcgm offers more metrics to collect, it accumulates more data.
The size of the information is larger for the profiling tools,
since they collect more information. pytorch logs the actions
that are part of the framework in great detail by default. In
particular, the detailed stack traces of PyTorch functions and
libraries contribute greatly to the scale of information. Ad-
ditionally, the files are saved in the Chrome JSON format,
which is not optimized for space at all. In comparison, nsys
defaults to logging more generic system parameters as it is
an application-independent solution. In addition, the files are
saved in a compressed binary format. However, increasing



EuroMLSys ’23, May 8, 2023, Rome, Italy

Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, Pinar Téziin

212000 — top £ 6001 — top ."\
= 10000 - nvidia-smi || g 500 - nvidia-smi 1 i
g 8000 —— dcgm © 4001 == dcgm |
> 600011} —- nsys 2300 —- nsys i \
S 4000 —— pytorch S 200+ o
§ 2000 g 100,/.‘\ ....................... —_ \
% 50 100 150 200 250 o 10 20 30 40 50 60
Time (Sec) Time (Sec)

(a) Training processes while running light training.

' .
— tOP)
- ‘nvidia-smi 4
2 10000 —— dcgm
o 5000+ == nsys
= 0 X
0 2000 4000 6000 8000 10000
Time (Sec)

(c) Training processes while running heavy training.

(b) Tool processes while running light training.

:.zi 80000 1 = top .'"
2 60000 - nvidia-smi I
o == dcgm |
= 40000{ == nsys .
> I
€ 20000 i
[
= 0 .

0 2000 4000 6000 8000 10000 12000

Time (Sec)

(d) Tool processes while running heavy training.

Figure 3. CPU memory usage.

the information collection in nsys would naturally increase
the complexity and size of the trace files as well.

We highlight that while building a platform for systemati-
cally benchmarking the interaction between the deep learning
applications and hardware, keeping all the monitoring and
profiling information from various experiments may become a
scalability challenge that has to be addressed.

CPU utilization. Figure 2 shows the CPU utilization for
both the training process itself while running a variety of
profiling and monitoring tools and the processes created by
the tools. We use top to report CPU utilization for each tool.
Therefore, the line marked as top represents the baseline,
and the rest of the tools run in parallel with top.

In Figure 2a, we see that the monitoring tools have no vis-
ible impact on the CPU usage of the training process, since
they don’t increase the CPU utilization beyond the base-
line. That is why the lines for top, nvidia-smi, dcgm, and
pytorch overlap completely till around 50 seconds. The 50
seconds mark the training time for 5 epochs (Table 2), where
both the training and monitoring stops. On the other hand,
nsys increases the CPU utilization slightly, ~18%, while
pytorch keeps it similar to the baseline training. However,
pytorch has its post-processing phase performed by the
main training process as well, which is why Figure 2a de-
picts a lengthy 1-core utilization after the 5-epoch training is
over for pytorch. As we can see in Figure 2b, nsys launches
a separate process for this purpose, which goes through
the phases of (1) initialization (initial jump to ~ 80%), (2)
waiting for the training to be over (low utilization), (3) post-
processing (brief ~ 100% utilization). The post-processing
time is shorter for nsys compared to pytorch. This is likely
due to the larger trace gathering performed by pytorch with
its default settings compared to nsys. (see Table 2). Finally,

the monitoring tools also spawn their own helper processes
with negligible CPU utilization as we see in Figure 2b.

Figure 2c and Figure 2d show that in a heavier training
scenario the impact of all tools on CPU utilization is in-
significant, while the impact on the total execution time and
post-processing is still visible with nsys finishing later.

Overall, when it comes to the profiling tools, one has to be
mindful about the hardware resource consumption and the
execution time of the post-processing phase of the profilers.

CPU memory usage. Figure 3 shows the CPU memory
usage for both the training process itself while running a
variety of profiling and monitoring tools and the processes
created by the tools. We use top once again to report the
CPU memory consumption for each tool. Thus, the top-line
represents the baseline similar to Figure 2.

In Figure 3a, we see that while the monitoring tools have
no visible impact on the CPU memory usage of the train-
ing process, the profiling tools have an impact. Both nsys
and pytorch increase the CPU memory usage (~55%), and
pytorch’s post-processing increases the total memory con-
sumption further. In Figure 3b, the nsys helper process has
the same three-stage behavior as found in Figure 2b. Finally,
for the heavy training scenario, Figure 3c reveals that the im-
pact on resource usage is negligible for all of the tools during
the training epochs. However, the impact of post-processing
of the profiling tools is still considerable.

Overall, Figure 3 exhibits similar trends to Figure 2.

GPU resources. Figure 4 shows the impact of the tools
on the GPU resource usage. None of these tools create a
separate helper process on the GPU. Therefore, the results
are only for the training process. We retrieve these metrics
from dcgm, which makes the bars for dcgm our baseline. As
the GPU compute utilization metrics we report SMACT and



Profiling & Monitoring Deep Learning Training Tasks

0.9 LR Y
0.8
0.7 E mean
c 06 A RS
QO.S + max * e o
S04
503
0.2
01 |« o ¢
oo [H B H & & & & & o o o
- w - w - w - w - w - w
EE e 5 ¢ E 288555 E 25 E 2
o 9 ¢ g © ¥ € g & ¥ € g © ¢ c © ¥ c © ¢ ¢
S o g 8 & g 8 s g s s T o T ®
he] Z ] Z ] z h<] ] h<]
s s s S s S
2 2 2 2 2 2

©
S
>
[a]
2]

SMocc

o
2
>
4
>

SMACT SMoCC DRAMA
light heavy
tool, metric, model size from top to bottom

Figure 4. GPU utilization.

SMOCC based on the results of Section 3.2.1. For the GPU
memory utilization we use DRAMA, showing the frequency of
IMEemory accesses.

In general, when it comes to the impact on the GPU resource
usage, all of the tools have negligible impact.

4 Related Work

While we study the main monitoring tools of NVIDIA GPUs,
AMD offers similar tools such as ROCm-smi [9]. In addition,
there are tools built on top of existing NVIDIA libraries.
For example, nvtop [6] is a wrapper around NVML that
provides visualization for NVML metrics, and Moneo [24] is
a monitoring system that specifically targets Al applications.

Orthogonal to Nsight Systems and Nsight Compute, there
has also been efforts to build profiling tools using the NVIDIA
CUDA Profiling Tools Interface (CUPTI API [26]) [12, 20, 24,
31, 38, 39]. Furthermore, there are tools that have a stronger
focus on profiling the data movement, such as [20], which
is also built on top of CUPTI in addition to OSU INAM [33].
Finally, nvprof was also a tool for profiling on NVIDIA GPUs,
but it has been deprecated by the release of Nsight Systems
and Nsight Compute.

In this paper, we scoped our study to the most relevant
tools provided by NVIDIA, while using the PyTorch profiler
as a point of comparison, but a similar investigation can be
done for the aforementioned tools using our methodology.

5 Conclusion

Deep learning models have become essential in many appli-
cation domains but are expensive to train. It is thus important
to understand the behavior of the training software and the
underlying hardware. In this paper, we have analyzed the
impact of monitoring and profiling tools on deep learning
training. We have found that monitoring tools have negli-
gible overhead and can be used for online decision making.
In contrast, profiling tools offer more detailed information
but incur time, space, and hardware resource consumption
overheads. Additionally, one should be careful with their
choice of metrics to monitor, as some paint a clearer picture
than others, especially in the case of GPU utilization.

EuroMLSys ’23, May 8, 2023, Rome, Italy

Profiling and monitoring tools have a fast and an ever-
evolving nature. For instance, in the recent past, dcgm didn’t
report metrics for the 4g. 20GB MIG instance, but now it does.
Similarly, the NVML library, which underlies nvidia-smi, re-
cently added finer-grained dcgm metrics like SMACT and
SMOCC. However, these additions are supported only on the
newer NVIDIA GPUs such as the ones based on the Hopper
architecture; one generation later than the Ampere archi-
tecture used in this study. This addition means that one can
simply collect metrics using nvidia-smi if the point of in-
terest is overall GPU utilization on the latest and emerging
NVIDIA GPUs, removing the dependency on multiple tools.
Therefore, one should pay attention to using the up-to-date
version of the tools on a given processor to determine the
most effective subset of tools for a particular study.

Acknowledgements

This work is funded by the Independent Research Fund Den-
mark’s (Danmarks Frie Forskningsfond; DFF) Sapere Aude
program under grant agreement number 0171-00061B. We
also thank DASYA lab members at IT University of Copen-
hagen for their support, and the reviewers of EuroMLSys for
their constructive feedback.

References

[1] [n.d.]. NVIDIA Data Center GPU Manager. https://github.com/
NVIDIA/DCGM.

[2] [n.d.]. NVIDIA Management Library (NVML). https://developer.nvidia.

com/nvidia-management-library-nvml.

[3] [n.d.]. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-

compute.

[4] [n.d.]. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-

systems.

[5] [n.d.]. NVIDIA System Management Interface. https://developer.

download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf.

[6] [n.d.]. NVTOP: Neat Videocard TOP. https://github.com/Syllo/nvtop.

[7] [n.d.]. NVTX (NVIDIA Tools Extension Library). https://nvidia.github.

io/NVTX/.

[8] [n.d.]. PyTorch Profiler. https://pytorch.org/tutorials/recipes/recipes/

profiler_recipe.html.

[n.d.]. ROCm Documentation. https://sep5.readthedocs.io/en/latest/

ROCm_System_Managment/ROCm-System-Managment.html.

[10] [n.d.]. TensorBoard: TensorFlow’s visualization toolkit. https://www.
tensorflow.org/tensorboard.

[11] [n.d.]. top(1) — Linux manual page. https://man7.org/linux/man-
pages/man1/top.1.html.

[12] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel,
Gabriel Marin, John Mellor-Crummey, and Nathan R Tallent. 2010.
HPCToolkit: Tools for performance analysis of optimized parallel pro-
grams. Concurrency and Computation: Practice and Experience 22, 6
(2010), 685-701.

[13] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A.
Wood. 1999. DBMSs on a Modern Processor: Where Does Time Go?.
In VLDB. 266-277.

[14] Sebastian Baunsgaard, Sebastian Benjamin Wrede, and Pmar Téziin.
2020. Training for Speech Recognition on Coprocessors. In ADMS.

[15] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In ASPLOS. 127-144.

—
O
—


https://github.com/NVIDIA/DCGM
https://github.com/NVIDIA/DCGM
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://github.com/Syllo/nvtop
https://nvidia.github.io/NVTX/
https://nvidia.github.io/NVTX/
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://sep5.readthedocs.io/en/latest/ROCm_System_Managment/ROCm-System-Managment.html
https://sep5.readthedocs.io/en/latest/ROCm_System_Managment/ROCm-System-Managment.html
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html

EuroMLSys ’23, May 8, 2023, Rome, Italy

[16]

(17]

(18]

(19]

[20]

[21]

[22

—

(23]

[24]

[25]

[26

—

[27]

(28]

[29]

(30]

Li Deng. 2012. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Magazine 29, 6
(2012), 141-142.

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-
ware. In ASPLOS. 37-48.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In CVPR. 770-778.
Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads. In USENIX
ATC. 947-960.

Yuting Jiang, Yifan Xiong, Lei Qu, Cheng Luo Luo, Chen Tian, Peng
Cheng, and Yongqiang Xiong. 2022. Moneo: Monitoring Fine-Grained
Metrics Nonintrusively in Al Infrastructure. ACM SIGOPS Oper. Syst.
Rev. 56, 1 (2022), 18-25.

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-
filing a Warehouse-Scale Computer. In ISCA. 158-169.

Kimberly Keeton, David A. Patterson, Yong Qiang He, Roger C.
Raphael, and Walter E. Baker. 1998. Performance Characterization of
a Quad Pentium Pro SMP Using OLTP Workloads. In ISCA. 15-26.
Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo
Mai, Paolo Costa, and Peter Pietzuch. 2019. Crossbow: Scaling Deep
Learning with Small Batch Sizes on Multi-GPU Servers. PVLDB 12, 11
(2019), 1399-1412.

Pouya Kousha, Bharath Ramesh, Kaushik Kandadi Suresh, Ching-
Hsiang Chu, Arpan Jain, Nick Sarkauskas, Hari Subramoni, and Dha-
baleswar K. Panda. 2019. Designing a Profiling and Visualization Tool
for Scalable and In-depth Analysis of High-Performance GPU Clusters.
In IEEE HiPC. 93-102.

Bryan McCann and contributors. 2022. PyTorch Example. https:
//github.com/pytorch/examples/tree/main/mnist.

NVIDIA. [n.d.]. CUDA Profiling Tools Interface (CUPTI). https://docs.
nvidia.com/cupti/.

NVIDIA. 2020. NVIDIA Multi-Instance GPU and NVIDIA Virtual
Compute Server - GPU Partitioning - Technical Brief. Technical Report.
NVIDIA.  https://www.nvidia.com/content/dam/en-zz/Solutions/
design-visualization/solutions/resources/documents1/Technical-
Brief-Multi-Instance- GPU-NVIDIA-Virtual-Compute-Server.pdf.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Képf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In NIPS.
8026-8037.

Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, and Pinar Téziin.
2022. An Analysis of Collocation on GPUs for Deep Learning Training.
CoRR (2022).

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. I7CV 115, 3 (2015), 211-252.
Sameer S Shende and Allen D Malony. 2006. The TAU parallel perfor-
mance system. IJHPCA 20, 2 (2006), 287-311.

Utku Sirin, Ahmad Yasin, and Anastasia Ailamaki. 2017. A methodol-
ogy for OLTP micro-architectural analysis. In DaMoN @ ACM SIGMOD.
1:1-1:10.

Hari Subramoni, Albert Mathews Augustine, Mark Arnold, Jonathan
Perkins, Xiaoyi Lu, Khaled Hamidouche, and Dhabaleswar K Panda.
2016. INAM2: InfiniBand network analysis and monitoring with MPL

[34]

[35]

[36]

[37]

[38]

[39]

Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, Pinar Téziin

In High Performance Computing. 300-320.

Pinar Toziin, Brian Gold, and Anastasia Ailamaki. 2013. OLTP in
Wonderland: Where Do Cache Misses Come from in Major OLTP
Components?. In DaMoN @ ACM SIGMOD. Article 8, 6 pages.

Pinar Tézln, Ippokratis Pandis, Cansu Kaynak, Djordje Jevdjic, and
Anastasia Ailamaki. 2013. From A to E: Analyzing TPC’s OLTP Bench-
marks: The Obsolete, the Ubiquitous, the Unexplored. In EDBT. 17-28.
Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li, and Gennady
Pekhimenko. 2021. Horizontally Fused Training Array: An Effective
Hardware Utilization Squeezer for Training Novel Deep Learning
Models. MLSys 3 (2021), 599-623.

Ross Wightman. 2019. PyTorch Image Models. https://github.com/
rwightman/pytorch-image-models.

Hui Zhang and Jeffrey Hollingsworth. 2019. Understanding the per-
formance of GPGPU applications from a data-centric view. In ProTools.
1-8.

Keren Zhou, Mark Krentel, and John Mellor-Crummey. 2020. A Tool
for Top-down Performance Analysis of GPU-Accelerated Applications.
In PPoPP. 415-416.


https://github.com/pytorch/examples/tree/main/mnist
https://github.com/pytorch/examples/tree/main/mnist
https://docs.nvidia.com/cupti/
https://docs.nvidia.com/cupti/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Abstract
	1 Introduction
	2 Tools
	2.1 Profiling Tools
	2.2 Monitoring Tools

	3 Experiments
	3.1 Setup
	3.2 Results

	4 Related Work
	5 Conclusion
	References

