Benchmarking Role-Based Access Control in
Data Management Systems

Mads Cornelius Hansen*, Pinar T6zlin, and Martin Hentschel

IT University of Copenhagen, Copenhagen, Denmark
{coha,pito,mhent}@itu.dk

Abstract. Role-Based Access Control (RBAC) is a widely used method
for controlling access to data in data management systems, offering a
scalable approach to enforcing security policies. Despite its broad adop-
tion, RBAC implementations vary significantly across different systems,
leading to inconsistencies in performance. Currently, there is no stan-
dardized benchmark for evaluating RBAC performance. In this study,
we propose a benchmark that focuses on two core components: the cre-
ation of role hierarchies with varying structures and the access to secur-
able objects and role metadata through SQL queries. We evaluate three
systems—PostgreSQL, MariaDB, and Snowflake—across on-premise and
cloud deployments. Our findings reveal notable differences in RBAC per-
formance, driven by 1/O demand, caching behavior, and system archi-
tecture. These results highlight the diversity of RBAC implementations
and the need for a systematic approach to evaluate RBAC at scale.

1 Introduction

Role-Based Access Control (RBAC) is a widely used method for controlling
access to data in data management systems. By assigning privileges to roles in-
stead of individuals, RBAC simplifies access management and provides a scalable
mechanism for enforcing security policies. For example, in a corporate system,
roles such as ‘HR’ or ‘Management’ can be defined with specific access rights
to employee records. This ensures users access only the information necessary
for their roles, thereby enhancing security and regulatory compliance. RBAC is
an effective strategy for managing data access at scale and has been adopted in
most modern data management systems.

Despite its broad adoption, RBAC is not implemented uniformly across data
management systems. Each system tends to interpret and execute RBAC prin-
ciples in slightly different ways, resulting in inconsistencies in functionality and
performance. From our experience in the industry, customers with large RBAC
setups may experience slow system behavior due to caching effects, for example.
While the security of RBAC implementations has been extensively studied, re-
search into how RBAC mechanisms affect system performance, such as latency

* Student at IT University of Copenhagen.

2 M. C. Hansen et al.

and resource utilization, is still lacking. Notably, there is no standardized bench-
mark for evaluating RBAC performance, especially under varying workloads,
deployment configurations, and scales.

This study addresses these gaps by investigating the performance of RBAC
across different data management systems. We examine how RBAC is imple-
mented in three systems—PostgreSQL, MariaDB, and Snowflake—propose a
benchmark for evaluating RBAC performance, and use this benchmark to con-
duct a performance assessment. These systems were selected for their widespread
use and because they represent a diverse range of architectural differences: open-
source vs. commercial, transactional vs. analytical, and on-premise vs. cloud-
native. One of the goals of this study is to understand how these architectural
differences influence the implementation and performance of RBAC.

Our results reveal a range of behaviors: PostgreSQL performs well locally
but suffers in the cloud, MariaDB degrades at scale, and Snowflake exhibits con-
stant yet high latency. These findings indicate that (a) there is no standard for
RBAC implementation, as each system shows different performance character-
istics; (b) there is a need for an accepted performance benchmark for RBAC;
and (c) although RBAC metadata handling is not a primary performance focus
of data management systems, all tested systems show potential for performance
optimization, for example, improving I/O behavior, caches, and network traffic.

Overall, this study highlights the importance of understanding RBAC per-
formance across different data management systems, particularly at scale. By
proposing a first step towards an accepted benchmark and evaluating multiple
systems, we provide insights into how RBAC implementations can vary signifi-
cantly, affecting both local and cloud-based deployments. Our findings show the
need for standardized benchmarks in the industry to facilitate comparisons and
optimizations of RBAC performance.

The paper is organized as follows: Section 2 provides background on RBAC
and the data management systems evaluated in this study. Section 3 reviews
related work. Section 4 describes our benchmark proposal for evaluating RBAC
performance. Section 5 presents the experimental setup and results of the per-
formance evaluation. Finally, Section 6 concludes the paper and provides an
outlook on future work.

2 Background

In this section, we provide background on role-based access control and the data
management systems evaluated in this study.

2.1 Role-Based Access Control

Role-Based Access Control (RBAC) was introduced as a model for access control
in data management systems in the 1990s [9,16] and proposed as a NIST standard
in 2001 [10]. RBAC is more general than the two traditional access control
models, Mandatory Access Control (MAC) and Discretionary Access Control

Benchmarking Role-Based Access Control in Data Management Systems 3
2220

= <D
@ @ Privileges

- |
Securable Objects = @ E |I||
-—

Fig.1: The RBAC model consists of users, roles, privileges, and securable ob-
jects. Users can represent individuals or applications. Privileges are granted from
securable objects to roles, and roles are granted to users or other roles.

Grants

Roles

(DAC). In MAC, a central authority controls access. Users and documents are
assigned security labels, and access is granted based on these labels. For example,
in a military setting, documents might be labeled “Top Secret”, “Secret”, or
“Confidential”, and users with clearance levels matching these labels can access
the documents. MAC is highly secure but can be complex to manage. DAC, on
the other hand, allows users to control access to their own data. For example,
DAC is used in Microsoft OneDrive or Google Docs, where users can choose
who can view or edit their documents. DAC is flexible and easy to use but can
be less secure if owners are not careful with privileges. RBAC combines the
strengths of both models by assigning privileges to roles instead of individual
users. This shifts access control from many user-specific decisions to a smaller
number of role definitions, simplifying administration. At the same time, users
only receive privileges relevant to their roles, which reduces the risk of accidental
overexposure of sensitive data and thereby enhances security.

RBAC is defined by four key components: users, roles, privileges, and secur-
able objects. Users are individuals or applications that access the data man-
agement system. Roles are abstract entities that hold a collection of privileges.
Privileges define what actions can be performed on securable objects. Securable
objects are the resources or data that users can access, such as databases, tables,
functions, and views. In RBAC, privileges are granted from securable objects to
roles, and roles are then granted to users. This means that users obtain access
to resources indirectly through roles, rather than receiving individual privileges
as in MAC and DAC.

Figure 1 illustrates the RBAC model. Privileges are granted from securable
objects to roles, meaning roles obtain the rights to perform specific actions on
those objects. Roles are then granted to users, which can represent either in-
dividuals or applications. A user may thus receive privileges indirectly through
one or more roles. For example, read and write privileges on a database table
might be granted to a role, and that role might then be granted to several users,
allowing them to read from and write to that table.

4 M. C. Hansen et al.

Roles can also be granted to other roles, forming a role hierarchy. In Fig-
ure 1, Role R1 is granted roles R2 and R3, which means R1 inherits all privi-
leges granted to R2 and R3. Role hierarchies simplify privilege management by
allowing roles to be structured in a way that reflects organizational needs. From
our experience, role hierarchies with depths of up to 100 and overall hierarchy
sizes of up to 100,000 roles are not uncommon.

Lastly, sessions are a key aspect of RBAC, representing the active instances
of users accessing the system. A session is created when a user logs in and can
include multiple roles assigned to that user. Typically, the user is assigned a
primary role and can enable secondary roles. The combination of the primary
role and secondary roles defines the privileges available to the user during that
session.

2.2 Evaluated Data Management Systems

In this study, we focus on the implementation of RBAC in three popular data
management systems: PostgreSQL [17], MariaDB [13], and Snowflake [7]. Post-
greSQL and MariaDB are open-source database management systems that rep-
resent the class of online transactional processing (OLTP) systems, designed
to support interactive applications requiring low-latency query responses and
high-throughput transactions. While OLTP systems are typically deployed on-
premises, they can also be hosted in the cloud, for example, on Amazon Web
Services, as analyzed in this study.

Snowflake, on the other hand, is a commercial, cloud-native data management
system that represents the class of online analytical processing (OLAP) systems
optimized for analytical workloads. OLAP systems are designed to handle large
datasets, up to petabytes of data, at the cost of increased latency and reduced
transactional throughput. Analytical data management systems like Snowflake
are typically hosted exclusively in the cloud, with no on-premise deployment
options.

As mentioned, the choice of these systems allows us to evaluate RBAC perfor-
mance across a range of architectures and deployment models from open-source
to commercial, transactional to analytical, and on-premise to cloud-native. For
MariaDB and PostgreSQL, we conduct the study on both on-premise and cloud
deployments, while Snowflake is evaluated exclusively in the cloud. Details on
the RBAC implementations of these systems appear in Section 5.2.

For the purposes of this study, we focus on RBAC features that are common
across all three systems, such as role-to-role grants to create role hierarchies
and SHOW queries to retrieve RBAC metadata. We exclude features that are
not universally supported, such as privileges unique to a single system (e.g.,
PostgreSQL’s SUPERUSER privilege or Snowflake’s OWNERSHIP privilege) as well
as features that are not relevant to our performance evaluation (e.g., row-level
security policies or column-masking policies).

Benchmarking Role-Based Access Control in Data Management Systems 5

3 Related Work

Benchmarks around role-based access control in database systems have mostly
focused on security aspects, such as the confidentiality and safety of data [21],
as well as authentication, privileges, and encryption [22]. In a vision paper for
benchmarking shared databases, the performance of verifiable transactions is
considered [8]. YCSB++ [15] is an extension of the Yahoo! Cloud Serving Bench-
mark (YCSB) [6] that evaluates, among other features, the performance of au-
thorization via access control lists.

Benchmarks for database and data management systems primarily focus on
the performance of data management. Examples include TPC-C [18] for OLTP
workloads; TPC-H [19], TPC-DS [20], and the Star Schema Benchmark [14] for
OLAP workloads; and CH-benCHmark [5] for hybrid OLTP and OLAP work-
loads. In addition, there have been benchmarking standardization efforts for
specialized data management scenarios, such as graph analytics [11], end-to-end
data pipelines in AT [4], data correlations and skew [3], robustness [12], and dy-
namic or unexpected workloads [2]. However, these benchmarks do not address
the performance of managing metadata, and specifically, RBAC metadata.

To the best of our knowledge, there is currently no benchmark that evaluates
the performance of RBAC mechanisms, including role hierarchy creation and role
hierarchy access, in data management systems. This study aims to take a first
step toward filling this gap.

4 Benchmark Design

Based on our industry experience, operating on data protected by RBAC with
large role hierarchies can result in high response times. To evaluate this, we de-
signed a benchmark that measures the performance of creating role hierarchies
with varying structures, as well as accessing securable objects and role meta-
data through SQL commands such as SELECT and SHOW. The primary goal is to
assess how the structure and size of the role hierarchy impact query execution
and metadata retrieval. The benchmark consists of two main components: Role
Hierarchy Creation and Role Hierarchy Access, which are described in detail
below. We have open sourced the benchmark on Github.!

4.1 Role Hierarchy Creation

In this component of the benchmark, we measure the performance of creating
role hierarchies with varying structures. In general, role hierarchies can be of any
graph structure, typically without including cycles. In this benchmark, we focus
on tree structures because these are the most common based on our experience.
The tree structures we consider are of the following types: deep linear hierarchies,
wide linear hierarchies, and balanced hierarchies.

! https://github.com/MaCoHa/Study _of_Role-Based_Access_Control_Mechanisms

https://github.com/MaCoHa/Study_of_Role-Based_Access_Control_Mechanisms

6 M. C. Hansen et al.

.

(c)

Fig. 2: Role hierarchy structures used in the benchmark: (a) deep linear, (b) wide
linear, and (c) balanced.

Figure 2 illustrates the three types of hierarchies. Deep linear hierarchies
(Figure 2a) consist of a single path of roles, where each role has exactly one
parent and one child, resulting in a long chain of roles (e.g., R1 < R2 < R3 up
to Rn, where n is the final number of roles). Wide linear hierarchies (Figure 2b)
have a single root role with multiple child roles but no further descendants.
Balanced hierarchies (Figure 2¢) combine both deep and wide structures, where
roles have a fixed number of children (e.g., always two children in Figure 2¢) and
can also be part of a deeper hierarchy.

We chose these structures for several reasons. Deep and wide linear hierar-
chies represent the two extremes of role hierarchy structures. With these struc-
tures, we aim to evaluate how well the systems handle both long chains of roles
and wide role assignments. Balanced hierarchies represent a common structure in
real-world applications. In one interesting example from the industry, a company
has internal functionality where employees can “check out” projects consisting of
databases and tables with sample data. Part of the check-out process is creating
a subtree of roles that is added to the existing role hierarchy of the company.
Over time, this leads to a role hierarchy that is large in size (up to 100,000 roles)
and represents a wide hierarchy structure, however with subtrees of roles. It can
be seen as a mix of a wide and a balanced hierarchy. The chosen structures in
our benchmark therefore cover this scenario well.

The process for creating role hierarchies in this benchmark is as follows.
Iteratively, the following commands are executed to create the role hierarchy:

1. Create a new role using the CREATE ROLE command.

2. Assign the new role to a parent role using the GRANT command, following
the structure of the hierarchy (deep, wide, or balanced).

3. Repeat steps 1 and 2 until the desired number of roles is reached or until a
time limit is reached.

For each command, we measure the execution time. After the time limit is
reached, we also measure the total number of roles created.

Benchmarking Role-Based Access Control in Data Management Systems 7

4.2 Role Hierarchy Access

In the second component of the benchmark, we measure the performance of ac-
cessing securable objects and role metadata through SQL commands. The focus
is on how the structure and size of the role hierarchy impact query execution
and metadata retrieval. This component includes the following SQL operations:
SELECT * FROM table and SHOW ROLES.

We selected these queries for several reasons. The SELECT * FROM table
command is among the most common operations in data management systems.
Measuring its performance allows us to assess how the size and structure of the
role hierarchy affect authorization time when accessing a securable object. This
query represents a broader class of “point access” operations, such as ALTER,
UPDATE, INSERT, and DELETE, where a single securable object is accessed and
authorization is performed.

The SHOW ROLES command is also widely used and is sometimes invoked
automatically by third-party tools (e.g., graphical user interfaces or reporting
systems). This command lists all roles within the role hierarchy, allowing us to
evaluate how efficiently the metadata subsystem can retrieve role information.

The process for evaluating role hierarchy metadata access in this benchmark
is as follows:

1. Create an empty table using the CREATE TABLE command.

2. Create a role hierarchy of size n using one of the three hierarchy structures,
as defined in the Role Hierarchy Creation component.

3. Grant read access on the table to the last role (Role R,) in the hierarchy
using the GRANT command, and activate the root role (Role R;) in the current
session using either the SET ROLE or USE ROLE command.

4. Execute the SELECT * FROM table query to measure the performance of
table access authorization.

5. Execute the SHOW ROLES command to measure the performance of role meta-
data retrieval.

For Steps 4 and 5, we record the execution time to evaluate system perfor-
mance. These steps may be repeated multiple times after the role hierarchy has
been created in Steps 1-3.

5 Experiments and Results

5.1 Experimental Setup

Hardware and Environment Configuration The experiments were con-
ducted in an on-premise setup and in the cloud. For the on-premise setup, the
experiments were conducted on a local machine, which was used both to execute
the benchmark script and to host the MariaDB and PostgreSQL databases. The
machine was a MSI GF65 Thin 10SER laptop running Microsoft Windows 11. It
featured an Intel i7-10750H CPU at 2.60 GHz with 6 physical cores, supported

8 M. C. Hansen et al.

by 16 GB of DDR4 RAM and a 1 TB WDC PC SN730 NVMe SSD. GPU ac-
celeration was not used in this study. The cache configuration included 64 KB
of L1 cache and 256 KB of L2 cache per core, along with 12 MB of shared L3
cache.

For the cloud setup, we used the Amazon Relational Database Service (RDS)
to deploy PostgreSQL and MariaDB. Both systems ran on Free Tier instances
(db.t4g.micro), each configured with 2 vCPUs, 1 GiB of RAM, 2.085 Mbps
of network throughput, and 20 GiB (gp2) of SSD storage. All instances were
deployed in the AWS Oregon (us-west-2) region, with encryption disabled. The
benchmark script was executed on an Amazon EC2 instance (t2.micro) in the
same region, configured with 1 vCPU, 1 GiB of RAM, and 10 GiB of SSD storage,
running Ubuntu Server 24.04 LTS.

Snowflake was evaluated using a cloud-native setup, with the experiments
conducted on a Snowflake account in the AWS Oregon (us-west-2) region. The
Snowflake instance was set up with a single virtual warehouse at the X-Small
size, with all other settings left at their default values. To assess the impact of
geographic proximity on performance, we conducted two sets of experiments:
in one, the benchmark driver was run from the local laptop located in Europe
(Denmark); in the other, the benchmark script was executed on the Amazon EC2
instance in the AWS Oregon region, co-located with the Snowflake deployment.

Snowflake is a natively distributed service that replicates data and metadata
across multiple servers, resulting in multiple additional network round trips. In
contrast, the single-node setups of PostgreSQL and MariaDB exclude replica-
tion, avoiding this networking overhead. Benchmarking a replicated setup of
PostgreSQL and MariaDB is left for future work.

System Configuration The configurations of PostgreSQL, MariaDB, and
Snowflake were as follows. For PostgreSQL, we used version 17.4 in the on-
premise setup and version 17.2-R2 in the cloud setup (both on the free tier
and paid tier instances of RDS). For MariaDB, we used version 11.4.4 in both
on-premise and cloud setups.

For Snowflake, at the time of the experiments, we used release version 9.92.
Snowflake follows a weekly release cycle, with all customers automatically up-
graded to the latest version. Therefore, repeating the experiments at a later date
may yield different results due to system changes.

5.2 Experimental Results

Role Hierarchy Creation Performance In this experiment, we executed
the Role Hierarchy Creation component of the benchmark, measuring the per-
formance of creating role hierarchies with varying structures (deep, wide, and
balanced). The balanced hierarchy structure consisted of four children per node.
We evaluated this component across the on-premise and cloud setups of Post-
greSQL and MariaDB, as well as Snowflake accessed from both Europe and

2 https://docs.snowflake.com /en/release-notes/2025/9_09

https://docs.snowflake.com/en/release-notes/2025/9_09

Benchmarking Role-Based Access Control in Data Management Systems 9

_ 1,000,000 1
)] b mDeep hierarchy
@ | W
a I o§’° o & B Wide hierarchy
Y b A NN
= b S & Balanced hierarch
= 100,000 1) A e — i Balanced hierarchy
2 E | o & $ &4
©] D AT Q! —t s L& d
g I Q(? qf/\) a — rad
o L o v =tes +4
b —ros -4
o | — —* + 4]
% fi —r — + 4|
€ 10,000 4 ’ =13 =32 b3
Y— 1 | —r —_— + 4
[S] 1 | — —rae :: o
P i — —
L = = o LY A
3] : = =i ¥ e P FFY
£ g — — Ll —* B N~ Y N N
=} ==t (= —r -4
=z E:NH —Lad —ias hdad Il "'ﬂ]%_
1,000 -
PostgreSQL PostgreSQL MariaDB MariaDB Snowflake Snowflake
(local) (cloud) (local) (cloud) (local driver) (cloud driver)

Fig. 3: Number of roles created within the 15-minute time limit.

an EC2 instance in the same AWS region. The benchmark was run with a 15-
minute time limit, during which the benchmark script continuously executed
CREATE ROLE and GRANT statements. We measured the execution time of each
individual statement and the total number of roles created within the time limit.
The experiment was repeated twice, and we report the average number of roles
created across both runs.

Findings. Figure 3 shows the number of roles created within the 15-minute time
limit for each system and hierarchy structure. Note the logarithmic scale of the
y-axis. We observe the following findings: In the on-premise setup, PostgreSQL
performed extremely well, creating hierarchies with around 900,000 roles within
15 minutes. However, in the cloud setup, PostgreSQL performed worse, creating
hierarchies with only around 22,000 roles. MariaDB performed equally well in
both the on-premise and cloud setups, creating around 65,000 to 110,000 roles
within the time limit. Interestingly, MariaDB was able to create almost 50%
more roles for the balanced hierarchy structure compared to the deep and wide
structures. Snowflake was able to create around 1,000 to 1,500 roles within the
time limit, regardless of the hierarchy structure or whether it was accessed from
Europe or the EC2 instance in the AWS Oregon region.

Figure 4 shows the individual execution times of the CREATE ROLE and GRANT
statements for PostgreSQL across all hierarchy structures. We show the execu-
tion times of the second benchmark run only. The x-axis represents the exper-
iment time in minutes, up to the 15-minute time limit. The y-axis shows the
measured latency in milliseconds. We observe the following findings: In the on-
premise setup, execution times for all statements remain steady at around 0.22
milliseconds, even as the role hierarchy grows over time. The structure and size of
the role hierarchy do not affect the execution time of the CREATE ROLE and GRANT

10 M. C. Hansen et al.

PostgreSQL (Local)

03 ~ Balanced tree create role

—Balanced tree grant role
~—Deep tree create role
~Deep tree grant role
~Wide tree create role
~Wide tree grant role

o
N
a

Latency (ms)
o
h 9
[N

I
=

0.05

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time from start of the experiment(minutes)

PostgreSQL (Cloud)

Deep tree grant role

1
Balanced tree grant role

80 j
1
) Wide tree grant role.

1 1 Wide, Deep, Balanced-Tree Create Role

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time from start of the experiment(minutes)

Fig. 4: Latency of CREATE ROLE and GRANT statements in PostgreSQL for all role
hierarchies in the on-premise setup (top) and cloud setup (bottom).

MariaDB (Local)

25 Wide tree qraqt rolei
£ L Bl Y S |
%15 ROy !
%)
c i T ¥ Maatancedree grant role AR
E A . W Ty i
o M Wﬂw V”\Nm"ﬁfﬂ ‘f\wﬂf }F’ W PP
5 .
Wide, Deep, Balanced-Tree Create Role
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time from start of the experiment(minutes)

MariaDB (Cloud)

35
30
1
525 Wide ‘tree :_:1rant'|;&3llfr
£ iy
=20 ol

9 Wm‘”“lféep tree grant role M
e

215

c

|
I
Balanced tree grant role }L....-——a—.h.,..__—u.—-
s bRt

! Wide, Deep, Balanced-Tree Create Role
| i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time from start of the experiment(minutes)

Fig.5: Latency of CREATE ROLE and GRANT statements in MariaDB for all role
hierarchies in the on-premise setup (top) and cloud setup (bottom).

Benchmarking Role-Based Access Control in Data Management Systems 11

Snowflake (Local driver)

800 Balanced tree create role

700 ; |) ~Balanced tree grant role
,U?GOO 1 i) ‘ o | ' Deep tree create role
£.500 | —Deep tree grant role

& 400 |~ Wide tree create role
% 300 { —Wide tree grant role
200
100

0

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15
Time from start of the experiment(minutes)

Snowflake (Cloud driver)

Balanced tree create role
—Balanced tree grant role
—Deep tree create role
~Deep tree grant role
~Wide tree create role

4 —Wide tree grant role

Latency (ms)
w b O
o
o

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time from start of the experiment(minutes)

Fig.6: Latency of CREATE ROLE and GRANT statements in Snowflake for all role
hierarchies in the local-driver setup (top) and cloud-driver setup (bottom).

statements. In the cloud setup, however, the execution time of GRANT statements
increases significantly over time (up to 80 milliseconds per statement), while the
execution time of CREATE ROLE statements remains constant.

Similar to Figure 4, Figure 5 shows the individual execution times of the
CREATE ROLE and GRANT statements for MariaDB across all hierarchy structures.
We observe the following findings: The execution times of GRANT statements
increase over time, while the execution times of CREATE ROLE statements remain
fairly constant. Interestingly, the execution time of GRANT statements for the
balanced hierarchy structure is significantly lower than for the deep and wide
structures, capping at around 12 milliseconds instead of 25 milliseconds. The
execution time of CREATE ROLE statements for the wide hierarchy structure is
the highest in the cloud setup.

Figure 6 shows the individual execution times of the CREATE ROLE and GRANT
statements for Snowflake across all hierarchy structures. We observe that the
execution times fluctuate between 300 and 450 milliseconds, with frequent spikes
up to 800 milliseconds. The execution times remain constant over time, with
no significant differences between the hierarchy structures and statement types
(GRANT vs. CREATE ROLE).

Explanation of Findings. The results of the Role Hierarchy Creation experiment
show significant differences in performance across the evaluated systems and
setups. In the following, we try to explain the observed findings.

12 M. C. Hansen et al.

2500 2500

PostgreSQL :

= gresQ s —m—MariaDB
§ 2000 § 2000 —— PostgreSQL
(5] (7]
g 1500 - S 1500 -
w0 2]
o o
3=] o
5 1000 4 *é 1000 -+
8 5

500 500 4
~ MariaDB e

0 ‘ .] 0 ?!:—’_—:_\!

0 5 10 15 0 5 10 15
Time from Start of Experiment (minutes) Time from Start of Experiment (minutes)
(a) On-premise setup (b) Cloud setup

Fig. 7: 1/O operations per second for PostgreSQL and MariaDB in the on-premise
setup and the cloud setup.

PostgreSQL’s drastic performance difference between the on-premise and
cloud setups can be attributed to its high number of I/O operations per sec-
ond (IOPS)—that is, the number of read and write operations performed on
the storage device—when executing GRANT statements. This is illustrated in
Figure 7, which shows the number of IOPS for PostgreSQL and MariaDB in
the on-premise setup (Figure 7a) and the cloud setup (Figure 7b). IOPS were
measured every minute using Windows Performance Monitor in the on-premise
setup, and every five minutes using AWS CloudWatch in the cloud setup. In the
on-premise setup, PostgreSQL uses approximately 2,000 IOPS, whereas in the
cloud setup, it drops to a maximum of 70 IOPS. AWS imposes limits on IOPS:
GP2 storage devices, as used in our experiment, are allowed to perform 3 IOPS
per GiB with a minimum of 100 IOPS [1]. Actual performance may fall short
of provisioned IOPS [1], which likely occurred in our experiment. We attribute
the high IOPS demand to the GRANT statements rather than the CREATE ROLE
statements, based on the elevated latencies observed in Figure 4.

MariaDB does not use the same I/O-intensive approach for grants as Post-
greSQL and generally performs well in both on-premise and cloud environments.
However, the performance of GRANT statements in MariaDB can degrade de-
pending on the structure of the role hierarchy. This is due to the way MariaDB
manages and caches privilege data at each role in the hierarchy. When a role is
added or modified, MariaDB invalidates the privilege cache of that role and re-
cursively invalidates all ancestor roles up to the root. Then, for each invalidated
role, MariaDB traverses its subtree to rebuild the privilege cache, descending
only into subtrees with invalidated caches.? In deep linear hierarchies, this re-
sults in high latency because every parent in the chain is invalidated and must
be traversed again (complexity of O(N)). In wide hierarchies, any modification

3 The source code for this process can be found in https://github.com/MariaDB/ser
ver /blob/main/sql/sql_acl.cc, beginning at line 6359 (accessed: 2025-05-28).

https://github.com/MariaDB/server/blob/main/sql/sql_acl.cc
https://github.com/MariaDB/server/blob/main/sql/sql_acl.cc

Benchmarking Role-Based Access Control in Data Management Systems 13

to a role causes the root’s cache to be invalidated, requiring traversal of all its
children during cache reconstruction (also O(N)). By contrast, balanced hierar-
chies are more efficient: only O(log N) ancestor roles are invalidated, and most
subtrees retain valid caches, leading to lower latency when modifying a balanced
role hierarchy.

Finally, Snowflake’s high latency of around 300 to 450 milliseconds for CREATE
ROLE and GRANT statements is due to its distributed architecture, which priori-
tizes large-scale data processing over low-latency operations. Snowflake’s archi-
tecture consists of three layers: a service layer, a compute layer, and a storage
layer [7]. Requests arrive at the service layer, which is a distributed mesh of
nodes, and are forwarded to the compute and storage layers if necessary. Meta-
data in Snowflake is stored in a key-value store within the service layer. This
key-value store is itself a distributed service in which metadata is replicated for
durability. Modifying metadata, such as creating roles or granting privileges,
therefore requires coordination across multiple nodes in the service layer. This
coordination involves network communication, which results in higher latency
compared to database systems like PostgreSQL and MariaDB. In our setup,
these systems were installed as single-node instances without replication and
additional network round trips.

Role Hierarchy Access Performance In this experiment, we executed the
Role Hierarchy Access component of the benchmark, measuring the perfor-
mance of accessing securable objects and role metadata through SQL commands
(SELECT and SHOW queries). We created role hierarchies of varying sizes (1,000,
10,000, and 100,000 roles) using three hierarchy structures: deep, wide, and bal-
anced. The SELECT * FROM table and SHOW ROLES queries were each executed
five times, and we report the median execution time. We measured the end-to-
end round-trip time from the benchmark driver, which includes network latency
from the driver to the database system.

Table 1 shows the execution times for the SELECT * FROM table and SHOW
ROLES queries across the evaluated systems and hierarchy structures, with results
reported in milliseconds. For role hierarchies that took more than 15 minutes to

create, the experiment was aborted and the corresponding table entries are left
blank.

For the SELECT query, we make the following observations: On-premise setups
for PostgreSQL and MariaDB generally perform better than their cloud coun-
terparts, which is expected due to the absence of network latency. Snowflake
exhibits higher latency, which we speculate may be due to inefficient caching
and the overhead of loading roles and privileges from its key-value store. A clear
distinction can be seen between the local driver in Europe and the cloud driver
in the same AWS region, due to the overhead of end-to-end network traffic.
Overall, the performance of the SELECT query is not significantly affected by
the structure of the role hierarchy, except in MariaDB’s cloud setup, where the
balanced structure outperforms the deep and wide variants. We currently have

14 M. C. Hansen et al.

SELECT * FROM table SHOW ROLES
Role Hierarchy Size Role Hierarchy Size
1,000 10,000 100,000 1,000 10,000 100,000

PostgreSQL

Local, Deep 0.28 0.22 0.24 1.41 7.53 69.57

Local, Wide 0.18 0.27 0.28 0.95 7.08 71.16

Local, Balanced 0.26 0.24 0.23 1.39 7.73 71.56

Cloud, Deep 0.46 0.50 1.74 9.28

Cloud, Wide 0.68 0.46 1.75 9.16

Cloud, Balanced 0.79 0.53 1.56 9.26
MariaDB

Local, Deep 0.13 0.16 1.47 7.22

Local, Wide 0.22 0.16 1.35 6.87

Local, Balanced 0.22 0.12 0.16 1.18 6.87 68.85

Cloud, Deep 0.44 0.53 2.08 11.19

Cloud, Wide 0.46 0.40 1.85 9.81

Cloud, Balanced 0.28 0.28 0.28 1.82 9.49 84.45
Snowflake

Local driver, Deep 618 2354

Local driver, Wide 456 2044

Local driver, Balanced 571 2719

Cloud driver, Deep 441 2580

Cloud driver, Wide 391 559

Cloud driver, Balanced 253 374

Table 1: Median execution time (ms) for SELECT * FROM table and SHOW ROLES
across systems. Blank cells indicate timeouts of hierarchy creation (> 15 min).

no clear explanation for this anomaly, and there are no noticeable differences or
outliers between the five query repetitions in MariaDB’s cloud setup.

For the SHOW ROLES query, we observe that PostgreSQL performs equally well
in both the on-premise and cloud setups, with the SHOW ROLES command taking
roughly 10 times longer as the role hierarchy increases in size, which is expected.
MariaDB’s performance is similar to PostgreSQL’s. Snowflake’s performance is
considerably slower, in the range of 1-2 seconds. The outliers of 559 ms and
374 ms for the “cloud driver, wide” and “cloud driver, balanced” cases, may likely
be explained by caching effects. Examining the individual execution times across
the five runs, we recorded the following for “cloud driver, wide”: 3359 ms, 344 ms,
2713 ms, 357 ms, and 559 ms (in that order). For “cloud driver, balanced”:
3163 ms, 2724 ms, 365 ms, 351 ms, and 374 ms. Snowflake, being a distributed
system, routes query requests to different nodes in the service layer, which can
lead to varying latencies due to potentially different hardware characteristics
and warm or stale caches.

Benchmarking Role-Based Access Control in Data Management Systems 15

6 Conclusion

In this study, we investigated the performance of Role-Based Access Control
(RBAC) across three data management systems: PostgreSQL, MariaDB, and
Snowflake. We designed a benchmark to evaluate the performance of RBAC
mechanisms, focusing on the role hierarchy creation and access. The benchmark
measures the performance of creating role hierarchies with varying structures
(deep, wide, and balanced) and accessing securable objects and role metadata
through SQL commands. The experiments were conducted in both on-premise
and cloud setups.

Our results show significant differences in performance characteristics across
the systems and deployment configurations. PostgreSQL performs well in the on-
premise setup, creating large role hierarchies efficiently, but suffers in the cloud
due to IOPS limitations. MariaDB shows consistent performance across both se-
tups, with balanced hierarchies performing better than deep and wide hierarchies
due to how MariaDB invalidates and rebuilds caches. Snowflake exhibits high
latency for role hierarchy creation and access operations, due to its distributed
architecture in which metadata is managed in a key-value store within one of its
architectural layers. PostgreSQL and MariaDB were not set up in a distributed
manner, so direct comparisons between these systems and Snowflake should be
made with caution.

These findings reveal that each system exhibits different performance char-
acteristics, and all tested systems show potential for optimization. PostgreSQL
could be improved with respect to I/O operations when executing GRANT state-
ments. MariaDB could benefit from optimizing the invalidation mechanism of its
role hierarchy cache. Snowflake’s RBAC performance will improve if Snowflake
optimizes network patterns within its architecture.

Our study also highlights the need for a standardized benchmark for RBAC
performance in data management systems. This is important as organizations
increasingly centralize their data management and provide access to a growing
number of users and applications, regulated via RBAC. This leads to increas-
ingly large role hierarchies, which can impact performance. The benchmark we
designed provides a first step toward evaluating RBAC performance, specifically
focusing on the role hierarchy component at scale.

Future work includes extending the benchmark to cover additional RBAC
features, such as granting different privileges, scaling the number of securable
objects accessed via the role hierarchy, and evaluating more complex hierarchy
structures such as DAGs and disjoint graphs. Furthermore, various other queries
to access RBAC metadata can be considered, for example, INFORMATION_SCHEMA
queries. Finally, we plan to evaluate RBAC performance in additional data man-
agement systems as well as in replicated setups of PostgreSQL and MariaDB,
and to investigate data governance performance in open-source metadata cata-
logs, such as Apache Polaris and Unity Catalog.

16

M. C. Hansen et al.

References

10.

11.

12.

13.
14.

15.

16.

17.

18.

. Amazon Web Services: Amazon RDS DB instance storage. https://docs.aws.amazo

n.com/AmazonRDS /latest /UserGuide/CHAP _Storage.html, accessed: 2025-05-28
Benson, L., Binnig, C., Bodensohn, J.M., Lorenzi, F., Luo, J., Porobic, D., Rabl,
T., Sanghi, A., Sears, R., Tozlin, P., Ziegler, T.: Surprise benchmarking: The why,
what, and how. In: DBTest. pp. 1-8 (2024)

Boncez, P.A., Anadiotis, A.G., Kldbe, S.: JCC-H: Adding join crossing correlations
with skew to TPC-H. In: TPCTC. Lecture Notes in Computer Science, vol. 10661,
pp. 103-119 (2017)

Briicke, C., Hartling, P., Palacios, R.E., Patel, H., Rabl, T.: TPCx-AI — an industry
standard benchmark for artificial intelligence and machine learning systems. Proc.
VLDB Endow. 16(12), 3649-3661 (2023)

Cole, R., Funke, F., Giakoumakis, L., Guy, W., Kemper, A., Krompass, S., Kuno,
H., Nambiar, R., Neumann, T., Poess, M., et al.: The mixed workload CH-
benCHmark. In: DBTest. pp. 1-6 (2011)

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM symposium on
Cloud computing. pp. 143-154 (2010)

Dageville, B., Cruanes, T., Zukowski, M., Antonov, V., Avanes, A., Bock, J., Clay-
baugh, J., Engovatov, D., Hentschel, M., Huang, J., et al.: The Snowflake elastic
data warehouse. In: Proceedings of the 2016 International Conference on Manage-
ment of Data. pp. 215-226 (2016)

El-Hindi, M., Arora, A., Karrer, S., Binnig, C.: Towards a benchmark for shared
databases [vision paper|. Datenbank-Spektrum 22(3), 227-239 (2022)

Ferraiolo, D., Kuhn, R.: Role-based access controls. In: Proceedings of the 15th
National Computer Security Conference. pp. 554-563 (1992)

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Transactions on Information
and System Security (TISSEC) 4(3), 224274 (2001)

Tosup, A., Hegeman, T., Ngai, W.L., Heldens, S., Prat-Pérez, A., Manhardto, T.,
Chafio, H., Capota, M., Sundaram, N., Anderson, M., Téanase, I.G., Xia, Y., Nai,
L., Boncz, P.: LDBC graphalytics: A benchmark for large-scale graph analysis on
parallel and distributed platforms. Proc. VLDB Endow. 9(13), 1317-1328 (2016)
Kersten, M.L., Kemper, A., Markl, V., Nica, A., Poess, M., Sattler, K.U.: Tractor
pulling on data warehouses. In: DBTest. pp. 1-6 (2011)

MariaDB Foundation: MariaDB server. https://mariadb.com, accessed: 2025-05-28
O’Neil, P.E., O’Neil, E.J., Chen, X.: The star schema benchmark (SSB). https:
//www.cs.umb.edu/~poneil/StarSchemaB.pdf, accessed: 2025-05-28

Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., Lépez, J., Gibson, G., Fuchs,
A., Rinaldi, B.: YCSB++ benchmarking and performance debugging advanced
features in scalable table stores. In: Proceedings of the 2nd ACM Symposium on
Cloud Computing. pp. 1-14 (2011)

Sanhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control
models. IEEE Computer 29(2), 38-47 (1996)

Stonebraker, M., Rowe, L.A.: The design of Postgres. ACM Sigmod Record 15(2),
340-355 (1986)

Transaction Processing Performance Council (TPC): TPC Benchmark™ C (2010),
http://www.tpc.org/tpee/

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://mariadb.com
https://www.cs.umb.edu/~poneil/StarSchemaB.pdf
https://www.cs.umb.edu/~poneil/StarSchemaB.pdf
http://www.tpc.org/tpcc/

19.

20.

21.

22.

Benchmarking Role-Based Access Control in Data Management Systems 17

Transaction Processing Performance Council (TPC): TPC Benchmark™ H (2022),
http://www.tpc.org/tpch/

Transaction Processing Performance Council (TPC): TPC Benchmark™ DS (2024),
http://www.tpc.org/tpcds/

Vieira, M., Madeira, H.: A dependability benchmark for OLTP application envi-
ronments. In: Proceedings 2003 VLDB Conference. pp. 742-753. Elsevier (2003)
Vieira, M., Madeira, H.: Towards a security benchmark for database management
systems. In: International Conference on Dependable Systems and Networks. pp.
592-601. IEEE (2005)

http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/

	Benchmarking Role-Based Access Control in Data Management Systems

