

www.dasya.dk

@dasyalTU

RAD rad.itu.dk

www.itu.dk

peaceful sharing while training

Pınar Tözün

Associate Professor, IT University of Copenhagen

pito@itu.dk, pinartozun.com, @pinartozun

INDEPENDENT RESEARCH FUND DENMARK

> novo nordisk foundation

CWI - DSDSD 04/10/2024

source: Stanford Al Index Report 2024

hardware underutilization

NVIDIA H200

141GB memory

50MB L2 cache

4.8TB/s

memory bandwidth

in the meanwhile, on pre-H200 GPUs ...

- *@ITU,* many ML jobs utilize *less than 50% of GPU resources* e.g., transfer learning, small models
- in real-world*, ~52% GPU utilization on average for 100,000 jobs

can we do better while using fewer resources?

sharing for deep learning training

• GPU sharing

<u>An Analysis of Collocation on GPUs for Deep Learning Training</u> Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün. EuroMLSys 2024

• data & work sharing

TensorSocket: Shared Data Loading for Deep Learning Training Ties Robroek, Neil Kim Nielsen, Pınar Tözün.

sharing resources on (NVIDIA) GPUs

Α С Multi-Instance GPU (MIG) vGPU vGPU vGPU $\mathbf{H} + \mathbf{H} + \mathbf{H} + \mathbf{H}$ $\mathbf{H} + \mathbf{H} + \mathbf{H} + \mathbf{H} + \mathbf{H}$ $\mathbf{H} + \mathbf{H} + \mathbf{H} + \mathbf{H} + \mathbf{H}$ ╟┼┼╢╟┼┼┼ <u>₽++</u>₽₽+++

С

finer-grained sharing

single user

(due to safety)

X

- hardware-support for resource split
- rigid partitioning X

- most straightforward
- time-multiplexing
- limited parallelism X

multi-instance GPU

unused available (memory/compute) unit

unavailable compute unit

unavailable compute unit = 10 SMs (streaming multiprocessor)

unavailable compute unit = 10 SMs (streaming multiprocessor)

unavailable compute unit = 10 SMs (streaming multiprocessor)

unavailable compute unit = 10 SMs (streaming multiprocessor)

unavailable compute unit = 10 SMs (streaming multiprocessor)

unavailable compute unit = 10 SMs (streaming multiprocessor)

unavailable compute unit = 10 SMs (streaming multiprocessor)

performance impact of collocation

NVIDIA DGX Station A100

workloads	model	batch size	dataset	
small	ResNet26 EfficientNet	128	CIFAR-10	
medium	ResNet50 EfficientNet	128	downsampled ImageNet <u>*</u>	
large	ResNet152 CaiT	32 128	ImageNet (2012)	
xlarge	DLRM	1	Criteo Terabyte	

CPU = AMD 7742 – 512 GB RAM 64 physical cores GPU = NVIDIA A100 – 40 GB RAM

- image models: CNN & transformers recommender model
- on single GPU with PyTorch v2.0
- results reported from 2nd epoch of training

small case – ResNet26

medium case – ResNet50

large case – ResNet152

collocation option & # of collocated models

no more throughput benefits – 80% utilization when training alone better to collocate with smaller or less compute heavy tasks

	DLRM – time per training block	ResNet152 – time per epoch	sm activity	memory footprint
DLRM alone ResNet152 alone			5% 82%	29.14 GB 8.47 GB

	DLRM – time per training block	ResNet152 – time per epoch	sm activity	memory footprint
DLRM alone ResNet152 alone			5% 82%	29.14 GB 8.47 GB
naïve			81%	37.75 GB
MPS			81%	37.62 GB
MIG: 3compute – DLRM 4compute – ResNet shared memory			39%	37.86 GB

	DLRM – time per training block	ResNet152 – time per epoch	sm activity	memory footprint
DLRM alone ResNet152 alone	5.36 h -	- 1.05 h	5% 82%	29.14 GB 8.47 GB
naïve			81%	37.75 GB
MPS			81%	37.62 GB
MIG: 3compute – DLRM 4compute – ResNet shared memory			39%	37.86 GB

	DLRM – time per training block		ResNet152 – time per epoch		sm activity	memory footprint
DLRM alone ResNet152 alone	5.36 h -		- 1.05 h		5% 82%	29.14 GB 8.47 GB
naïve	6.09 h	(+14%)	1.11 h	(+5%)	81%	37.75 GB
MPS	5.57 h	(+5%)	1.10 h	(+4%)	81%	37.62 GB
MIG: 3compute – DLRM 4compute – ResNet shared memory	5.60 h	(+5%)	1.40 h	(+33%)	39%	37.86 GB

collocation can lead to (almost) free lunch when workloads stress hardware different resources

sharing for deep learning training

• GPU sharing

<u>An Analysis of Collocation on GPUs for Deep Learning Training</u> Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün. EuroMLSys 2024

data & work sharing

TensorSocket: Shared Data Loading for Deep Learning Training Ties Robroek, Neil Kim Nielsen, Pınar Tözün.

conventional journey of data while training

data journey in collocated training

T UNIVERSITY OF COPENHAGEN

redundant work & memory use!

data sharing for collocated training TensorSocket

eliminates redundant work on CPUs!

data loading server

consumers don't have to be in perfect sync.

impact of data sharing

higher overall throughput & reduced CPU need!

4 A100 GPUs

ullet

comparison to other techniques

No Sharing Joader TensorSocket

- on a single H100 GPU (80GB)
- CPU resources are the same for all techniques

TensorSocket maintains throughput even under heavy collocation.

sharing for deep learning training

thank you!

- not all training needs all the resources of a single GPU
- collocation on GPUs benefits when the aggregate compute & memory needs of the collocated training runs fit in the GPU
 - MPS performs the best overall
 - MIG is the only option if more strict separation is needed
- data sharing can further reduce hardware resource needs while increasing training throughput

need to build schedulers that incorporate resource & data sharing for deep learning!

backup

A100

incorporates collocation

data exploration

- allows easy, extensible, and scalable tracking of hardware metrics on CPUs & GPUs
 - listeners for monitoring (dcgm, nvidia-smi, top)
 & profiling (nsys, ncu, pytorch profiler) tools

used by several members of our group including data scientists for systematic benchmarking of deep learning training

Robroek et al. "Data Management and Visualization for Benchmarking Deep Learning Training Systems", DEEM 2023 https://github.com/Resource-Aware-Data-systems-RAD/radt & https://www.youtube.com/watch?v=oaGfzYjKJ1Q

GPU utilization

- GPU utilization: % of time one or more kernels were executing on the GPU
- **GRACT**: % of time any portion of the graphics or compute engines were active
- **SMACT:** the fraction of active time on an SM, averaged over all SMs = streaming

hardware utilization without collocation

39

IT UNIVERSITY OF COPENHAGEN

mixed workloads: all compute-heavy

data sharing for collocated training

IT UNIVERSITY OF COPENHAGEN

can also reduce work on GPUs!

teamRAD - resource-aware data systems IT UNIVERSITY OF COPENHAGEN

TiesEhsanRobertRobroekYousefzadeh-Asl-MiandoabBayer