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evolution of deep learning

2017

2023
~5 orders of magnitude 
increase in training cost.

~7 orders of magnitude growth 
in computational footprint.

https://aiindex.stanford.edu/report/


deep learning hardware
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deep learning hardware
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in real-world*, 52% GPU utilization
on average for 100,000 jobs

*Jeon et al. “Analysis of Large-Scale Multi-Tenant GPU 
Clusters for DNN Training Workloads.” USENIX ATC 2019

can we do better while using 
fewer hardware resources?
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https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/atc19/presentation/jeon


conventional wisdom
exclusive GPU access per job
pessimistic, but easy to manage 

workload collocation on GPUs
leads to better GPU utilization
reduces costs

hardware resource management
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need for resource managers that incorporate GPU collocation!
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data path of deep learning training
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CPU feeds the accelerators with data.
• 16-64 cores per GPU
• 96 cores per TPU*

more direct data paths exist!

need to make such paths 
accessible to deep learning 
practitioners!

*Audibert et al., “tf.data service: A Case for Disaggregating ML Input Data Processing” ACM SoCC 2023

conventional

direct

https://dl.acm.org/doi/abs/10.1145/3620678.3624666


data processing @ the edge 

conventional-approach
• do (most) data processing in the cloud

cannot satisfy
• low-latency & real-time applications
• poor / non-existing connectivity
• legal restrictions & privacy

need for efficient & complex data processing 
closer to data sources; at the edge!
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data source edge cloud



how to monitor hardware?

 easy, extensible, and scalable 
tracking of hardware metrics

 frontend for data exploration
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used by several members of our group, including data scientists,
for systematic benchmarking of deep learning training



can we do better with fewer resources?

yes, but no free lunch!

• must have more effective workload collocation on accelerators 

• data path requires optimizations to reduce data movement

• different scales of hardware devices need different tools

• higher awareness on hardware utilization
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thank you!
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