Efficient-Supercomputing De Data-Intensive Application

Pınar Tözün Zoi Kaoudi

IT UNIVERSITY OF COPENHAGEN

Efficient Supercomputing for Data-Intensive Applications

Pınar Tözün Associate Professor IT University of Copenhagen

Zoi Kaoudi Associate Professor IT University of Copenhagen

Resource-aware Deep Learning

Cost-aware Data Platform Integration

IT UNIVERSITY OF COPENHAGEN

resource-aware deep learning

Pınar Tözün

Associate Professor, IT University of Copenhagen

pito@itu.dk, www.pinartozun.com, @pinartozun

novo nordisk

foundation

Digital Tech Summit 31/10/2024

source: Stanford Al Index Report 2024

IT UNIVERSITY OF COPENHAGEN

deep learning hardware

IT UNIVERSITY OF COPENHAGEN

deep learning hardware

deep learning hardware

in real-world, 52% GPU utilization* on average for 100,000 jobs

*Jeon et al. "<u>Analysis of Large-Scale Multi-Tenant GPU</u> <u>Clusters for DNN Training Workloads</u>." USENIX ATC 2019

can we do better while using fewer hardware resources?

hardware resource management

conventional wisdom

- → exclusive GPU access per job
- ➔ pessimistic, but easy to manage

workload collocation on GPUs

- → leads to better GPU utilization
- ➔ reduces costs

need for resource managers that incorporate GPU collocation!

*Audibert et al., "<u>tf.data service: A Case for Disaggregating ML Input Data Processing</u>" ACM SoCC 2023

data path of deep learning training

CPU feeds the accelerators with data.

- 16-64 cores per GPU
- 96 cores per TPU*

more direct data paths exist!

need to make such paths accessible to deep learning practitioners! memory PCle GPU

conventional

data processing @ the edge

conventional-approach

• do (most) data processing in the cloud

cannot satisfy

- low-latency & real-time applications
- poor / non-existing connectivity
- legal restrictions & privacy

need for efficient & complex data processing closer to data sources; at the edge!

how to monitor hardware?

- → easy, extensible, and scalable tracking of hardware metrics
- → frontend for data exploration

used by several members of our group, including data scientists, for systematic benchmarking of deep learning training

can we do better with fewer resources?

yes, but no free lunch!

- must have more effective workload collocation on accelerators
- data path requires optimizations to reduce data movement
- different scales of hardware devices need different tools
- higher awareness on hardware utilization