
towards transparency in computational 
footprint of deep learning

Pınar Tözün
Associate Professor, IT University of Copenhagen
pito@itu.dk, pinartozun.com, @pinartozun

www.itu.dkwww.dasya.dk
@dasyaITU

RAD
rad.itu.dk

ESwML
22/04/2024

mailto:pito@itu.dk
http://www.pinartozun.com/
https://twitter.com/pinartozun
http://www.itu.dk/
http://www.dasya.dk/
https://twitter.com/dasyaITU/
https://rad.itu.dk/


background

2

• Associate Professor
Resource-aware & -constrained ML

• Research staff member
Building an HTAP system
– commercialized as IBM Db2 Event Store

• PhD student
Scalable OLTP on Multicores

• BSc student
Efficient data race detection

Copenhagen, Denmark
2018 – present

San Jose, CA, USA
2015 – 2018

Lausanne, Switzerland
2009 – 2014

Istanbul, Turkey
2005 – 2009



• >> 5 orders of magnitude increase in 
the computational need for models.

• estimated carbon footprint for
large language model training =
average yearly energy of
several US homes

sources: https://openai.com/blog/ai-and-compute/
Dodge et al. “Measuring the Carbon Intensity of AI in Cloud Instances.” FAccT 2022

deep learning software
FPGA …CPU GPU TPU

APIs (python, R, …)

commodity 
hardware

2012 present

• powerful hardware
• larger datasets
• deep learning frameworks

challenge#1: unsustainable growth

3

need for higher computational efficiency!

https://openai.com/blog/ai-and-compute/
https://dl.acm.org/doi/10.1145/3531146.3533234


*Jeon et al. “Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads.” ATC 2019

challenge#2: hardware underutilization

4

need for higher computational efficiency!

• @ITU, jobs of data scientists utilize
less than 50% of GPU resources
e.g., transfer learning, small models

• in real-world*, ~52% GPU utilization
on average for 100,000 jobs141GB GPU memory

50MB L2 cache
4.8TB/s Memory 

Bandwidth

NVIDIA H200

https://www.usenix.org/conference/atc19/presentation/jeon


 how to quantify computational efficiency?
• profiling & monitoring tools for GPUs

 how to make the process systematic? 
• resource-aware data science tracker (radT)

need for higher computational efficiency

5

[DEEM 2023]

[EuroMLSys 2023]

https://itu-dasyalab.github.io/RAD/publication/papers/DEEM2023.pdf
https://itu-dasyalab.github.io/RAD/publication/papers/euromlsys2023.pdf


profilers

PyTorch profiler

• framework 
specific

• runs as part of the 
training process

• easy to use
• a few lines of 

additional code

6

NVIDIA Nsight Systems 
(nsys)

• system-wide

• runs as separate 
process

• more detailed insights 
to OS & network

NVIDIA Nsight Compute 
(ncu)

• kernel-level tracing of 
micro-architectural 
behavior

• runs as separate 
process

• finer-grained insights
• intrusive

• iterates over the 
program several times



monitoring tools

NVIDIA System Management 
Interface (nvidia-smi)

• performance configuration 
(frequency changing, MIG config)

• tracking a range of high-level 
performance metrics

• GPU Utilization
• memory consumption
• …

• doesn’t monitor MIG instances

7

NVIDIA Data Center GPU Manager 
(dcgm)

• can create GPU groups

• a wider range of and finer-grained 
performance metrics for monitoring

• SM Active (SMACT)
• SM Occupancy (SMOCC)
• …

• can monitor MIG instances

*on H100s, unlike on A100s,  nvidia-smi can also track additional metrics such as SMACT.



GPU utilization
• GPU utilization: % of time one or more kernels were executing on the GPU
• GRACT: % of time any portion of the graphics or compute engines were active
• SMACT: the fraction of active time on an SM, averaged over all SMs

0.0

0.2

0.4

0.6

0.8

1.0

1 8 32 12
8

25
6

51
2

10
24 1 8 32 12

8
25

6
51

2
10

24 1 8 32 12
8

25
6

51
2

10
24 1 8 32 12

8
25

6
51

2
10

24 1 8 32 12
8

25
6

51
2

10
24 1 8 32 12

8
25

6
51

2
10

24 1 8 32 12
8

25
6

51
2

10
24

1 128 512 1024 2048 4096 8192

ut
ili

za
tio

n

#threads (upper), #thread_blocks (lower) used

GPU Utilization mean GRACT mean SMACT mean

coarse-grained GPU utilization metrics could be misleading!

= streaming 
multiprocessor

finer-grained!

8

each thread fetches a data item and takes its square



time overhead of tools

9

9.61 9.66 9.61 9.68 9.88

13.65

0
2
4
6
8

10
12
14

ep
oc

h 
tim

e 
(s

)

37.06 37.11 37.04 37.19 39.13

0
5

10
15
20
25
30
35
40

ep
oc

h 
tim

e 
(m

)

hi
gh

 o
ve

rh
ea

d

monitoring tools have negligible time overhead.
profilers’ overhead is noticeable.
profiling just for one iteration might be enough.

5 epochs on PyTorch 1.31 & DGX A100 Station

light: small CNN on MNIST heavy: ResNet50 on ImageNet



space overhead of tools

tool light:
small CNN on MNIST

heavy:
ResNet50 on ImageNET

top ~20KB ~2MB
nvidia-smi ~20KB ~2MB

dcgm ~85KB ~8MB
nsys ~40MB ~5GB

pytorch ~1.4GB -

10

trends for space overhead are similar to time overhead for all tools

5 epochs on PyTorch 1.31 & DGX A100 Station



CPU overhead

11

CPU overhead of profiling tools is higher than monitoring ones.
profiling tools also need time for post-processing of collected traces.

training processes tools’ processes

light model: small CNN on MNIST, 5 epochs
on PyTorch & DGX A100 Station



insights
• for model level optimization use framework specific profilers

• for digging deeper into OS and system  use Nsight Systems

• for kernel-level optimizations  use Nsight Compute

• profile the needed amount of code for a reasonable range of time
• an iteration may be enough to show the behavior of training a model 

• for online decision making
 use monitoring tools with representative fine-grained metrics

12



 how to quantify computational efficiency?
• profiling & monitoring tools for GPUs

 how to make the process systematic? 
• resource-aware data science tracker (radT)

need for higher computational efficiency

13

[DEEM 2023]

[EuroMLSys 2023]

https://itu-dasyalab.github.io/RAD/publication/papers/DEEM2023.pdf
https://itu-dasyalab.github.io/RAD/publication/papers/euromlsys2023.pdf


• wide configuration support including collocation on GPUs

• track hardware metrics in addition to software metrics

• handle continuous streams of experimental data

• support efficient visualization for experimental data exploration

• filter large amounts of inconsequential data

• minimal code impact

requirements

14



radT

• extends mlflow
• incorporates collocation
• allows easy, extensible, and scalable tracking of 

hardware metrics on CPUs & GPUs

frontend for
data exploration

15

used by several members of our group, including data 
scientists, for systematic benchmarking of deep learning 

i i



experiment configuration 

Experiment,Workload,Status,Run,Devices,Collocation,       File,          Listeners,Params
1, 1,           ,       ,      0, -,train.py,smi+top+dcgm,--batch-size 128
1, 1,           ,       ,     1, -,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,    2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,   2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,   MPS,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,            MPS,train.py,smi+top+dcgm,--batch-size 128

16



experiment configuration 

Experiment,Workload,Status,Run,Devices,Collocation,       File,          Listeners,Params
1, 1,           ,       ,      0, -,train.py,smi+top+dcgm,--batch-size 128
1, 1,           ,       ,     1, -,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,    2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,   2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,   MPS,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,            MPS,train.py,smi+top+dcgm,--batch-size 128

17



experiment configuration 

Experiment,Workload,Status,Run,Devices,Collocation,       File,          Listeners,Params
1, 1,           ,       ,      0, -,train.py,smi+top+dcgm,--batch-size 128
1, 1,           ,       ,     1, -,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,    2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,   2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,   MPS,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,            MPS,train.py,smi+top+dcgm,--batch-size 128

18



experiment configuration 

Experiment,Workload,Status,Run,Devices,Collocation,       File,          Listeners,Params
1, 1,           ,       ,      0, -,train.py,smi+top+dcgm,--batch-size 128
1, 1,           ,       ,     1, -,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,    2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,   2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,   MPS,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,            MPS,train.py,smi+top+dcgm,--batch-size 128

19



code impact

for hardware monitoring, no code changes needed 
$ python -m radt model.py --batch-size 256  single model training
$ python -m radt config.csv  bigger experiment

for customized control over machine learning metrics

20



frontend

21

experiments
workloads

from selected
experiment

collocated runs from 
selected workload

results of all 
selected runs 

will be displayed 
together



frontend – demo 

22

can download as
• jpg, png, pdf – to display  as image
• csv – for drawing it differently
• json – to share the exploration results

variety of visualization options 



radT for systematic benchmarking

23

• need for systematic benchmarking of both software and hardware

• track small and large experiments, including collocated ones

• real-time and scalable data tracking and processing

• efficient and effective data exploration

https://github.com/Resource-Aware-Data-systems-RAD/radt

https://github.com/Resource-Aware-Data-systems-RAD/radt


• other accelerators and vendors 

• resource-constrained hardware
• tegrastats on NVIDIA Jetsons
• other platforms

non-existing or very difficult 

• navigating the deep systems stack
• makes it harder to pinpoint the cause 

of a performance behavior

further considerations 

24

deep learning software
FPGA …CPU GPU TPU

APIs (python, R, …)



Robert
Bayer

Ties
Robroek

Ehsan
Yousefzadeh-Asl-Miandoab

teamRAD - resource-aware data systems
rad.itu.dk

25

https://rad.itu.dk/


www.dasya.dk
@dasyaITU

26

http://www.dasya.dk/
https://twitter.com/dasyaITU/


 how to quantify computational efficiency?
• profiling & monitoring tools for GPUs

 how to make the process systematic? 
• resource-aware data science tracker (radT)

need for higher computational efficiency

27

[DEEM 2023]

[EuroMLSys 2023]

thank you!RAD
rad.itu.dk

https://itu-dasyalab.github.io/RAD/publication/papers/DEEM2023.pdf
https://itu-dasyalab.github.io/RAD/publication/papers/euromlsys2023.pdf
https://rad.itu.dk/

	Slide Number 1
	background
	challenge#1: unsustainable growth
	challenge#2: hardware underutilization
	need for higher computational efficiency
	profilers
	monitoring tools
	GPU utilization
	time overhead of tools
	space overhead of tools
	CPU overhead
	insights
	need for higher computational efficiency
	requirements
	radT
	experiment configuration 
	experiment configuration 
	experiment configuration 
	experiment configuration 
	code impact
	frontend
	frontend – demo 
	radT for systematic benchmarking
	further considerations 
	teamRAD - resource-aware data systems
	Slide Number 26
	need for higher computational efficiency
	backup
	unsustainable growth of deep learning
	experimental setup
	CPU memory
	GPU overhead
	radT
	workload collocation on (NVIDIA) GPUs
	hardware scales for deep learning 
	experiment configuration 
	experiment configuration 
	experiment configuration 
	experiment configuration 

