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• >> 5 orders of magnitude increase in 
the computational need for models.

• estimated carbon footprint for
large language model training =
average yearly energy of
several US homes

sources: https://openai.com/blog/ai-and-compute/
Dodge et al. “Measuring the Carbon Intensity of AI in Cloud Instances.” FAccT 2022

deep learning software
FPGA …CPU GPU TPU

APIs (python, R, …)

commodity 
hardware

2012 present

• powerful hardware
• larger datasets
• deep learning frameworks

challenge#1: unsustainable growth
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need for higher computational efficiency!

https://openai.com/blog/ai-and-compute/
https://dl.acm.org/doi/10.1145/3531146.3533234


*Jeon et al. “Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads.” ATC 2019

challenge#2: hardware underutilization
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need for higher computational efficiency!

• @ITU, jobs of data scientists utilize
less than 50% of GPU resources
e.g., transfer learning, small models

• in real-world*, ~52% GPU utilization
on average for 100,000 jobs141GB GPU memory

50MB L2 cache
4.8TB/s Memory 

Bandwidth

NVIDIA H200

https://www.usenix.org/conference/atc19/presentation/jeon


 how to quantify computational efficiency?
• profiling & monitoring tools for GPUs

 how to make the process systematic? 
• resource-aware data science tracker (radT)

need for higher computational efficiency
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[DEEM 2023]

[EuroMLSys 2023]

https://itu-dasyalab.github.io/RAD/publication/papers/DEEM2023.pdf
https://itu-dasyalab.github.io/RAD/publication/papers/euromlsys2023.pdf


profilers

PyTorch profiler

• framework 
specific

• runs as part of the 
training process

• easy to use
• a few lines of 

additional code
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NVIDIA Nsight Systems 
(nsys)

• system-wide

• runs as separate 
process

• more detailed insights 
to OS & network

NVIDIA Nsight Compute 
(ncu)

• kernel-level tracing of 
micro-architectural 
behavior

• runs as separate 
process

• finer-grained insights
• intrusive

• iterates over the 
program several times



monitoring tools

NVIDIA System Management 
Interface (nvidia-smi)

• performance configuration 
(frequency changing, MIG config)

• tracking a range of high-level 
performance metrics

• GPU Utilization
• memory consumption
• …

• doesn’t monitor MIG instances
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NVIDIA Data Center GPU Manager 
(dcgm)

• can create GPU groups

• a wider range of and finer-grained 
performance metrics for monitoring

• SM Active (SMACT)
• SM Occupancy (SMOCC)
• …

• can monitor MIG instances

*on H100s, unlike on A100s,  nvidia-smi can also track additional metrics such as SMACT.



GPU utilization
• GPU utilization: % of time one or more kernels were executing on the GPU
• GRACT: % of time any portion of the graphics or compute engines were active
• SMACT: the fraction of active time on an SM, averaged over all SMs
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coarse-grained GPU utilization metrics could be misleading!

= streaming 
multiprocessor

finer-grained!
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each thread fetches a data item and takes its square



time overhead of tools
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monitoring tools have negligible time overhead.
profilers’ overhead is noticeable.
profiling just for one iteration might be enough.

5 epochs on PyTorch 1.31 & DGX A100 Station

light: small CNN on MNIST heavy: ResNet50 on ImageNet



space overhead of tools

tool light:
small CNN on MNIST

heavy:
ResNet50 on ImageNET

top ~20KB ~2MB
nvidia-smi ~20KB ~2MB

dcgm ~85KB ~8MB
nsys ~40MB ~5GB

pytorch ~1.4GB -
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trends for space overhead are similar to time overhead for all tools

5 epochs on PyTorch 1.31 & DGX A100 Station



CPU overhead
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CPU overhead of profiling tools is higher than monitoring ones.
profiling tools also need time for post-processing of collected traces.

training processes tools’ processes

light model: small CNN on MNIST, 5 epochs
on PyTorch & DGX A100 Station



insights
• for model level optimization use framework specific profilers

• for digging deeper into OS and system  use Nsight Systems

• for kernel-level optimizations  use Nsight Compute

• profile the needed amount of code for a reasonable range of time
• an iteration may be enough to show the behavior of training a model 

• for online decision making
 use monitoring tools with representative fine-grained metrics
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 how to quantify computational efficiency?
• profiling & monitoring tools for GPUs

 how to make the process systematic? 
• resource-aware data science tracker (radT)

need for higher computational efficiency
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[DEEM 2023]

[EuroMLSys 2023]

https://itu-dasyalab.github.io/RAD/publication/papers/DEEM2023.pdf
https://itu-dasyalab.github.io/RAD/publication/papers/euromlsys2023.pdf


• wide configuration support including collocation on GPUs

• track hardware metrics in addition to software metrics

• handle continuous streams of experimental data

• support efficient visualization for experimental data exploration

• filter large amounts of inconsequential data

• minimal code impact

requirements

14



radT

• extends mlflow
• incorporates collocation
• allows easy, extensible, and scalable tracking of 

hardware metrics on CPUs & GPUs

frontend for
data exploration
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used by several members of our group, including data 
scientists, for systematic benchmarking of deep learning 

i i



experiment configuration 

Experiment,Workload,Status,Run,Devices,Collocation,       File,          Listeners,Params
1, 1,           ,       ,      0, -,train.py,smi+top+dcgm,--batch-size 128
1, 1,           ,       ,     1, -,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,    2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 2,           ,       ,   2,     3g.20gb,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,   MPS,train.py,smi+top+dcgm,--batch-size 128
1, 3,           ,       , 1,            MPS,train.py,smi+top+dcgm,--batch-size 128
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code impact

for hardware monitoring, no code changes needed 
$ python -m radt model.py --batch-size 256  single model training
$ python -m radt config.csv  bigger experiment

for customized control over machine learning metrics

20



frontend
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experiments
workloads

from selected
experiment

collocated runs from 
selected workload

results of all 
selected runs 

will be displayed 
together



frontend – demo 
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can download as
• jpg, png, pdf – to display  as image
• csv – for drawing it differently
• json – to share the exploration results

variety of visualization options 



radT for systematic benchmarking
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• need for systematic benchmarking of both software and hardware

• track small and large experiments, including collocated ones

• real-time and scalable data tracking and processing

• efficient and effective data exploration

https://github.com/Resource-Aware-Data-systems-RAD/radt

https://github.com/Resource-Aware-Data-systems-RAD/radt


• other accelerators and vendors 

• resource-constrained hardware
• tegrastats on NVIDIA Jetsons
• other platforms

non-existing or very difficult 

• navigating the deep systems stack
• makes it harder to pinpoint the cause 

of a performance behavior

further considerations 
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deep learning software
FPGA …CPU GPU TPU

APIs (python, R, …)



Robert
Bayer

Ties
Robroek

Ehsan
Yousefzadeh-Asl-Miandoab

teamRAD - resource-aware data systems
rad.itu.dk
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https://rad.itu.dk/


www.dasya.dk
@dasyaITU
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http://www.dasya.dk/
https://twitter.com/dasyaITU/


 how to quantify computational efficiency?
• profiling & monitoring tools for GPUs

 how to make the process systematic? 
• resource-aware data science tracker (radT)

need for higher computational efficiency
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[DEEM 2023]

[EuroMLSys 2023]

thank you!RAD
rad.itu.dk

https://itu-dasyalab.github.io/RAD/publication/papers/DEEM2023.pdf
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