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• several orders of magnitude increase
in the computational need for models.

• estimated carbon footprint for
large language model training =
average yearly energy of
several US homes

sources: https://openai.com/blog/ai-and-compute/
Dodge et al. “Measuring the Carbon Intensity of AI in Cloud Instances.” FAccT 2022

deep learning software
FPGA …CPU GPU TPU

APIs (python, R, …)

commodity 
hardware

2012 present

• powerful hardware
• larger datasets
• deep learning frameworks

unsustainable growth of deep learning
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need for higher computational efficiency!

https://openai.com/blog/ai-and-compute/
https://dl.acm.org/doi/10.1145/3531146.3533234


hardware scales for deep learning 
tinylarge

can we utilize these hardware well?
can we do more with less?
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“An Analysis of Collocation on GPUs for 
Deep Learning Training”, EuroMLSys 2024

“Reaching the Edge of the Edge: 
Image Analysis in Space”, DEEM 2024

https://arxiv.org/abs/2209.06018
https://arxiv.org/abs/2209.06018
https://arxiv.org/abs/2301.04954
https://arxiv.org/abs/2301.04954


*Jeon et al. “Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads.” ATC 2019

hardware underutilization
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exclusive GPU access is a big part of the problem!

• @ITU, many ML jobs utilize
less than 50% of GPU resources
e.g., transfer learning, small models

• in real-world*, ~52% GPU utilization
on average for 100,000 jobs141GB GPU memory

50MB L2 cache
4.8TB/s Memory 

Bandwidth

NVIDIA H200

https://www.usenix.org/conference/atc19/presentation/jeon


= multiple workloads sharing hardware resources 

benefits when a single workload cannot utilize available 
resources well / fully

usual challenge interference across workloads
GPU-specific challenge no fine-grained & flexible 

resource sharing mechanism

workload collocation
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• naïve collocation & virtualization
• kernels of different applications are serialized
× provides limited parallelism

• multi-process service (MPS)
• GPU resources are split (manually or automatically) across applications
 kernels of different applications can run simultaneously
× allowed for one user only (for safety reasons)

• multi-instance GPU (MIG)
• hardware support for resource split, introduced with NVIDIA A100
 prevents interference & can do all the above in a MIG partition
× rigid partitioning of GPU resources

workload collocation on (NVIDIA) GPUs
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multi-instance GPU 

GPU

#1 #2 #3 #4 #5 #6 #7

#1 #2 #3 #4 #5 #6 #7

X

#8

1 compute unit

1 memory unit

unused available (memory/compute) unit

unavailable compute unitX

compute:

memory:
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multi-instance GPU 

1 compute unit = 1g = 14 SMs

1 memory unit = 5GB

unused available (memory/compute) unit

unavailable compute unit = 10 SMsX

on A100 with 40GB RAM
SM = streaming multiprocessor

• available instance profiles differ 
across GPUs that support MIG

• doesn’t allow distributed 
training on A100s

GPU

#1 #2 #3 #4 #5 #6 #7

#1 #2 #3 #4 #5 #6 #7

X

#8

compute:

memory:
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NVIDIA DGX Station A100

CPU = AMD 7742 – 512 GB RAM
64 physical cores
GPU = NVIDIA A100 – 40 GB RAM

performance impact of collocation?

• image models: CNN & transformers
+ recommender model

• on single GPU with PyTorch v2.0
• results reported from 2nd epoch of training
• nvidia-smi & dcgm as monitoring tools

figure source

workloads model batch 
size dataset

small ResNet26
EfficientNet 128 CIFAR-10

medium ResNet50
EfficientNet 128 downsampled

ImageNet*

large ResNet152
CaiT

32
128 ImageNet (2012)

xlarge DLRM 1 Criteo Terabyte
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https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-station-a100-system-architecture-white-paper.pdf
https://arxiv.org/abs/1707.08819


hardware utilization without collocation

0

20

40

60

80

100

Re
sN

et
26

Ef
fic

ie
nt

N
et

Re
sN

et
50

Ef
fic

ie
nt

N
et

Re
sN

et
15

2

Ca
iT

CIFAR 10 downsampled
ImageNet

ImageNet

SM
AC

T 
= 

sm
ac

tiv
ity

 (%
)

mean max

small medium large 17

0

10

20

30

40

Re
sN

et
26

Ef
fic

ie
nt

N
et

Re
sN

et
50

Ef
fic

ie
nt

N
et

Re
sN

et
15

2

Ca
iT

CIFAR 10 downsampled
ImageNet

ImageNet

m
em

or
y 

fo
ot

pr
in

t o
n 

GP
U

 (G
B)

small medium large



0

5

10

15

20

na
ïv

e
M

PS
7g

.4
0g

b
4g

.2
0g

b

na
ïv

e

M
PS

3g
.2

0g
b

na
ïv

e

M
PS

2g
.1

0g
b

na
ïv

e

M
PS

1g
.5

gb

1X 2X 3X 7X

ep
oc

h 
tim

e 
(s

ec
on

ds
)

collocation option & # of collocated models

time per epoch – small case – ResNet26

collocation benefits despite increased epoch time 
MPS > MIG > naïve

~2X 
throughput

~2.6X 
throughput

~3.2X throughput
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time per epoch – medium case – ResNet50

still some throughput benefits
but diminishing returns for increased collocation
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collocation option & # of collocated models

~1.4X 
throughput

~1.5X 
throughput

~1.5X throughput
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collocation option & # of collocated models

time per epoch – large case – ResNet152

no more throughput benefits – 80% utilization when training alone
better to collocate with smaller or less compute heavy tasks 20



mixed workloads: compute- & memory-heavy
DLRM – time per 

training block
ResNet152 –

time per epoch sm activity memory 
footprint

21



mixed workloads: compute- & memory-heavy
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DLRM alone
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5.36 h
-

-
1.05 h

5%
82%

29.14 GB
8.47 GB
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MPS 5.57 h    (+5%) 1.10 h    (+4%) 81% 37.62 GB

24



mixed workloads: compute- & memory-heavy

collocation can lead to (almost) free lunch
when workloads stress hardware different resources

DLRM – time per 
training block

ResNet152 –
time per epoch sm activity memory 

footprint

DLRM alone
ResNet152 alone

5.36 h
-

-
1.05 h

5%
82%

29.14 GB
8.47 GB

naïve 6.09 h    (+14%) 1.11 h    (+5%) 81% 37.75 GB

MPS 5.57 h    (+5%) 1.10 h    (+4%) 81% 37.62 GB

MIG:
3compute – DLRM
4compute – ResNet
shared memory

5.60 h    (+5%) 1.40 h    (+33%) 39% 37.86 GB

25



collocation for deep learning
• not all training needs all the resources of a single GPU

• collocation on GPUs benefits when the aggregate compute & 
memory needs of the collocated training runs fit in the GPU

• MPS performs better thanks to its flexibility
• wasn’t the case pre-PyTorch v2.0 (with CUDA 11.7)

• MIG is the only option if more strict separation is needed
• if the workload resource needs known ahead of time,

can be configured to achieve performance close to MPS

need to build schedulers that incorporate GPU collocation! 26



hardware scales for deep learning 
tinylarge

can we utilize these hardware well?
can we do more with less?
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“An Analysis of Collocation on GPUs for 
Deep Learning Training”, EuroMLSys 2024

“Reaching the Edge of the Edge: 
Image Analysis in Space”, DEEM 2024

https://arxiv.org/abs/2209.06018
https://arxiv.org/abs/2209.06018
https://arxiv.org/abs/2301.04954
https://arxiv.org/abs/2301.04954


machine learning @ the edge 
• low-latency & real-time applications
• poor / non-existing connectivity
• legal restrictions & privacy

need for efficient & complex 
data processing closer to

data sources!

data source edge

28



DISCO: Danish student CubeSat program
• collaboration across Danish universities 
• use-case: build a CubeSat satellite for observation of 

landmasses (especially snow, ice …) in the Arctic
• goal: ML-based image classification to send only the relevant 

images to ground (minimize data movement)

https://discosat.dk/

29

our task: build the image
processing unit on the satellite

 which edge device can 
satisfy the requirements 
for this task?

https://discosat.dk/


image processing unit requirements

30

Greenland 
< 270 s latency

Arctic region 
< 71.74 s latency

real-time imaging 
< 4.42 s latency

max 5 watts average 2 watts

min 320 images 
captured per day.

max 49.1 images can be 
transferred per day!

flexible software upload!



higher specialization for ML

ARM 
Cortex-M7

Jetson 
Nano

Toradex
Verdin

CoralAI 
Micro

CoralAI 
Mini

CoralAI 
USB Stick 

Neural 
Compute Stick 

ARM
Cortex-M7 
@300MHz

ARM A57 
@1.43GHz

ARM
Cortex-A53 
@1.8GHz,

ARM Cortex-M7
@800MHz

ARM Cortex-M7 
@800MHz,

ARM Cortex-M4
@400MHz

ARM Cortex-
A35

@1.5GHz

Raspberry Pi 3
BCM2837 ARM @1.2GHz

384KB SRAM,
32KB FRAM 4GB 4GB 64MB 2GB 1GB

none
128-core
Maxwell 

GPU

NPU
(2.25 TOPS)

CoralAI Edge
TPU (4 TOPS)

Intel Movidius 
Myriad X VPU

31
general-purpose



32

model

pretrained MobileNetV1
224 px

224 px

4512 px

4512 px

400xpatches

0
500

1,000
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3,500

0.25 0.5 1
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depth multiplier (DM)

data



latency & power draw 

Jetson & NCS2 have low-latency for smaller models, Toradex is best.
Faster devices fail the peak power budget. Corals fit the power budget.33
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DISCO satellite
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ML @ the edge

35

• demand for more data analysis closer to the data source
• reduces data movement & privacy concerns
• helps with real-time decisions

• variety of edge devices to choose from offering increasingly 
powerful hardware but still resource-constrained
• requires not just latency-efficient,

but also energy-efficient data processing
• hardware specialization helps with latency & power budget

• though, we need more flexibility

need for methods that can deal with resource 
management & program updates at the edge!



hardware scales for deep learning 
tinylarge

can we utilize these hardware well?  not always
• need more effective workload collocation on accelerators 
• energy-efficiency must be part of the utilization analysis

can we do more with less?  yes, but it isn’t free lunch
• need to understand better the capabilities of different devices
• every scale requires its own dynamic resource managers 36



Robert
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Ties
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Yousefzadeh-Asl-Miandoab

teamRAD - resource-aware data systems
rad.itu.dk
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https://rad.itu.dk/
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http://www.dasya.dk/
https://twitter.com/dasyaITU/


hardware scales for deep learning 
tinylarge

can we utilize these hardware well?  not always
• need more effective workload collocation on accelerators 
• energy-efficiency must be part of the utilization analysis

can we do more with less?  yes, but it isn’t free lunch
• need to understand better the capabilities of different devices
• every scale requires its own dynamic resource managers 39

thank you!



backup

40



Dodge et al. “Measuring the Carbon Intensity of AI in Cloud Instances.” FAccT 2022

unsustainable growth of deep learning

41

https://dl.acm.org/doi/10.1145/3531146.3533234


radT

Robroek et al. “Data Management and Visualization for Benchmarking Deep Learning Training Systems”, DEEM 2023
https://github.com/Resource-Aware-Data-systems-RAD/radt & https://www.youtube.com/watch?v=oaGfzYjKJ1Q

• extends mlflow
• incorporates collocation
• allows easy, extensible, and scalable tracking of 

hardware metrics on CPUs & GPUs
• listeners for monitoring (dcgm, nvidia-smi, top)

& profiling (nsys, ncu, pytorch profiler) tools

frontend for
data exploration

used by several members of our group including data scientists 
for systematic benchmarking of deep learning training

42

https://itu-dasyalab.github.io/RAD/publication/papers/DEEM2023.pdf
https://github.com/Resource-Aware-Data-systems-RAD/radt
https://www.youtube.com/watch?v=oaGfzYjKJ1Q


GPU utilization
• GPU utilization: % of time one or more kernels were executing on the GPU
• GRACT: % of time any portion of the graphics or compute engines were active
• SMACT: the fraction of active time on an SM, averaged over all SMs
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Yousefzadeh-Asl-Miandoab et al.  “Profiling and Monitoring Deep Learning Training Tasks”, EuroMLSys 2023

coarse-grained GPU utilization metrics could be misleading!

= streaming 
multiprocessor

finer-grained!
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https://itu-dasyalab.github.io/RAD/publication/papers/euromlsys2023.pdf


setup 

ARM Cortex-M7 Jetson Nano CoralAI * Neural Compute Stick 2

framework TensorFlow Lite for 
Microcontrollers TensorRT TensorFlow Lite OpenVino

quantization 8bit (to fit the device 
memory) 16bit 8bit (only supports 

8bit ints)
16bit

(only supports 16bit floats)

batching not enough memory 
to do batching

batch size per 
inference = 16

doesn’t support 
batching

number of concurrent 
inference requests = 4

45



accuracy
MobileNet DM = depth multiplier

0.25 0.5 1

accuracy

32bit float 86.92% 90.33% 90.74%

16bit float 86.78% 90.33% 90.74%

8bit integer 84.33% 89.78% 91.55%

#params 219,829 832,101 3,233,989

too big & complex for most 
resource-constrained devices

accuracy trade-off 
becomes noticeable

47

on Flowers dataset, with post-training quantization
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latency & power draw 
118.8s

ARM-based microcontroller draws little power per unit time
but per inference power need is higher than the rest!
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