

RAD rad.itu.dk

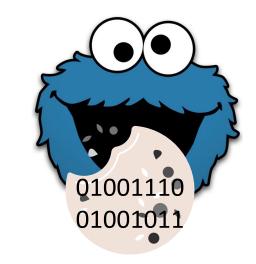
dasya.itu.dk

<u>www.itu.dk</u>

satisfying the data monster with fewer resources

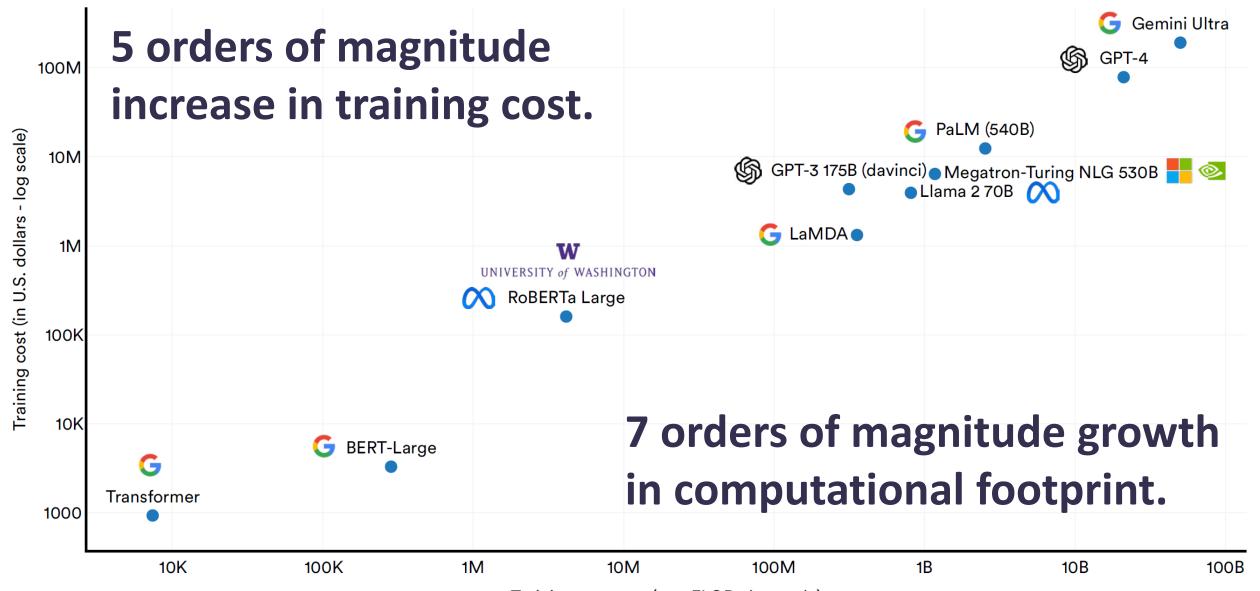
Pınar Tözün

Associate Professor IT University of Copenhagen



nnovationsfonden

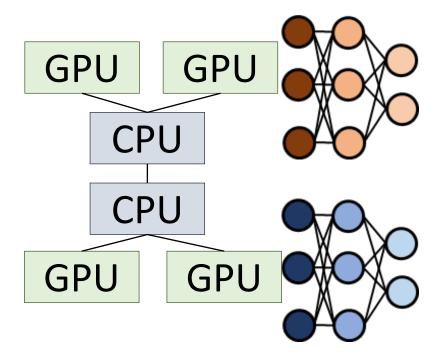
language model training (2017 – today)



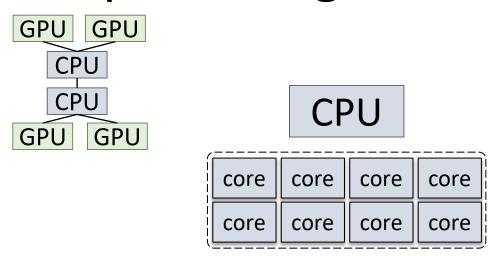
Training compute (petaFLOP - log scale)

source: Stanford Al Index Report 2024

deep learning hardware

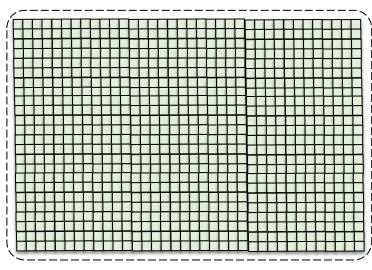


deep learning commodity hardware



central processing unit

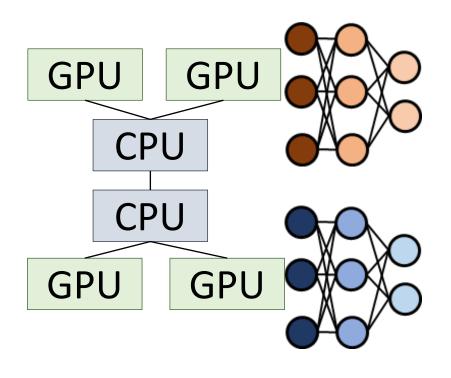
- → several (complex) cores
- good for latency-oriented tasks
 & single-core performance
 - throughput- vs latency-oriented designs exist among CPUs as well



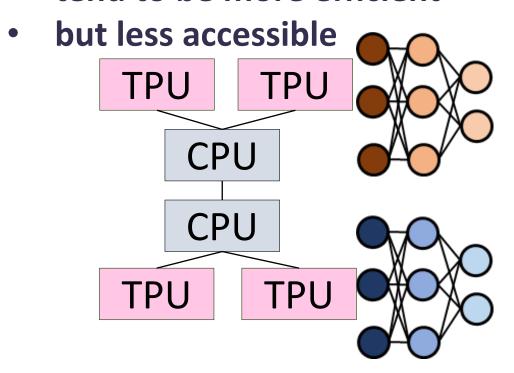
graphics processing unit

- → many (simple) cores
- good for throughput-orientedembarrassingly parallel tasks
 - →good for deep learning
 - e.g., large matrix operations

deep learning hardware

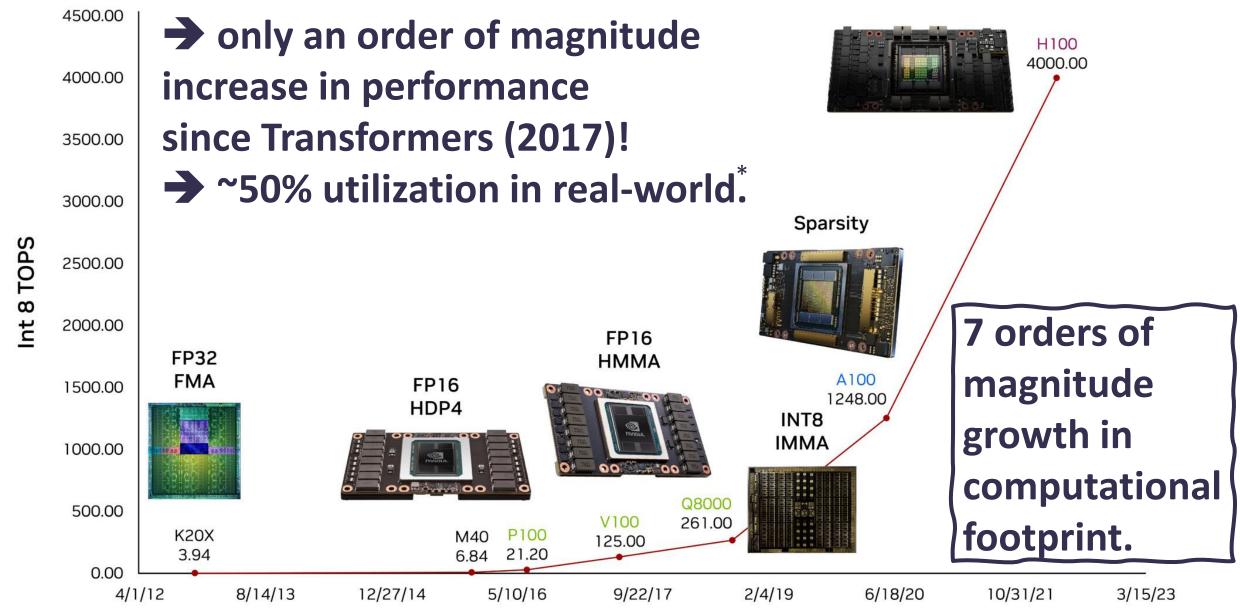


tend to be more efficient

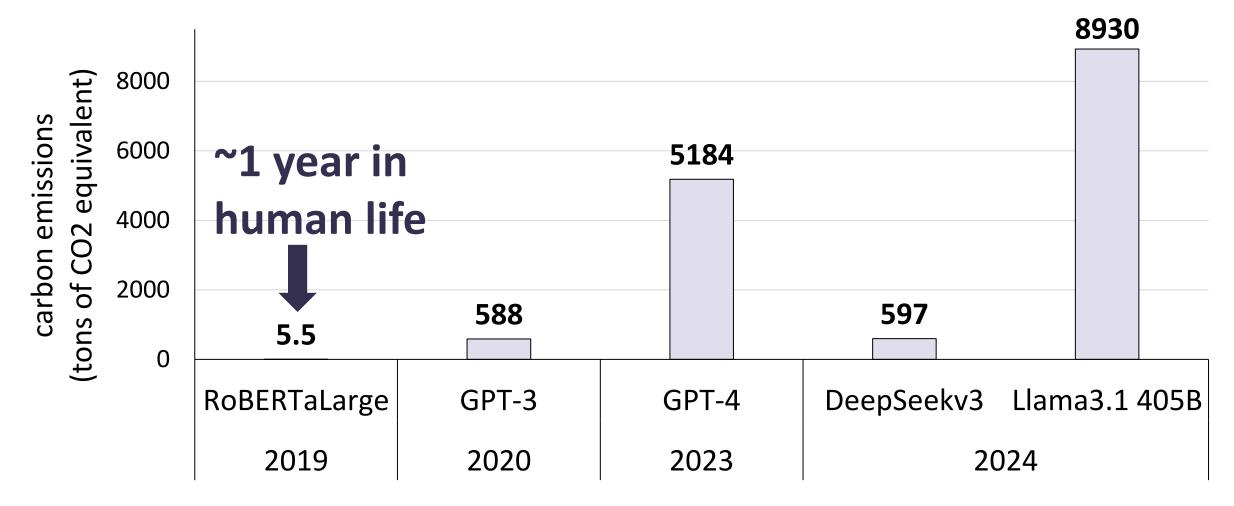


costs & progress depend on the performance & utilization of the available hardware.

NVIDIA GPUs (2012 – 2023)



carbon footprint of language model training



can we do better while using fewer resources? model accuracy cannot be the only metric to aim for!

deep learning with fewer resources

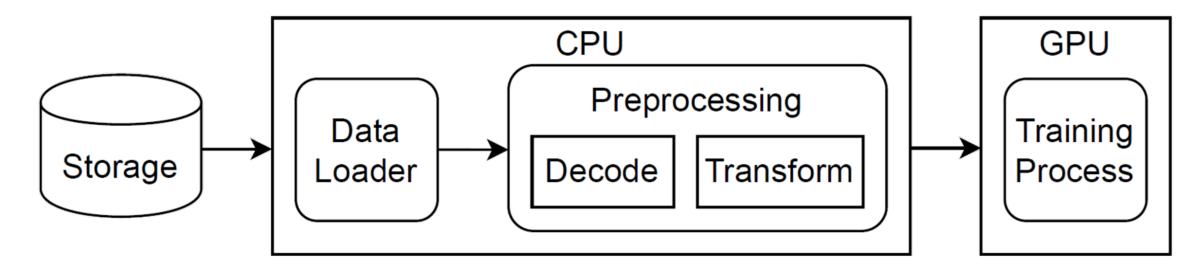
GPU-centric data path

data & work sharing

impact of data selection

for model training

journey of data in deep learning training



CPU feeds the GPU

- 16-64 CPU cores per GPU (recommended)
- 96 CPU cores per TPU*
- → otherwise, GPU/TPU may be underutilized
- → can we do more with fewer CPUs & less of the CPU?

deep learning with fewer resources

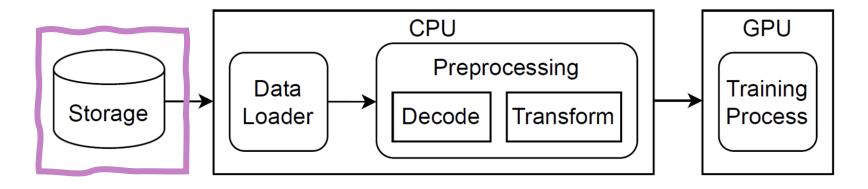
Path to GPU-Initiated I/O for Data-Intensive Systems

Karl B. Torp, Simon Lund, Pınar Tözün.

• GPU-centric data path DaMoN 2025

data & work sharing

impact of data selection



deep learning with fewer resources

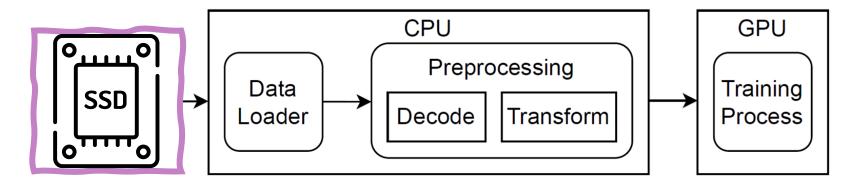
Path to GPU-Initiated I/O for Data-Intensive Systems

Karl B. Torp, Simon Lund, Pınar Tözün.

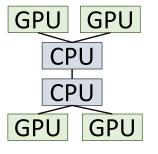
GPU-centric data path DaMoN 2025

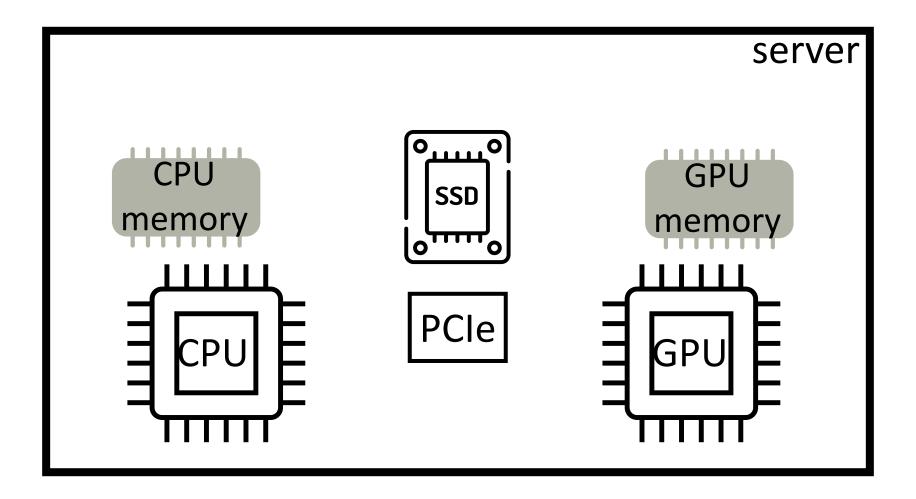
data & work sharing

impact of data selection



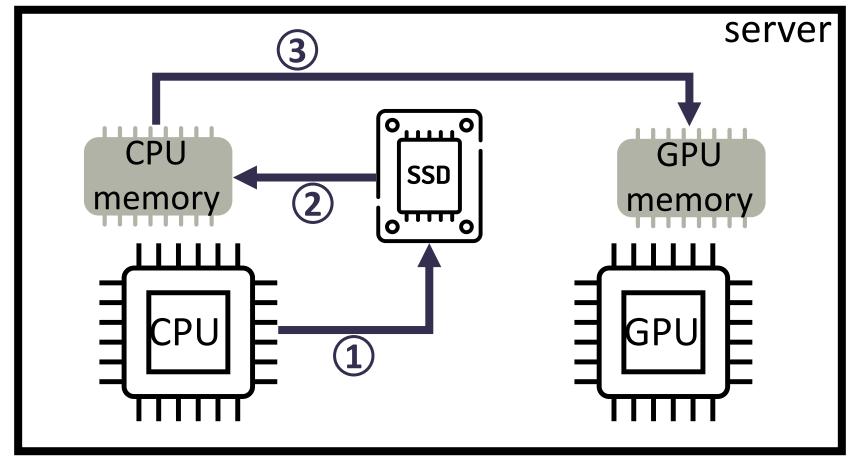
target hardware setup





^{*} PCIe is dropped in the remaining figures for the sake of simplicity in illustrations.

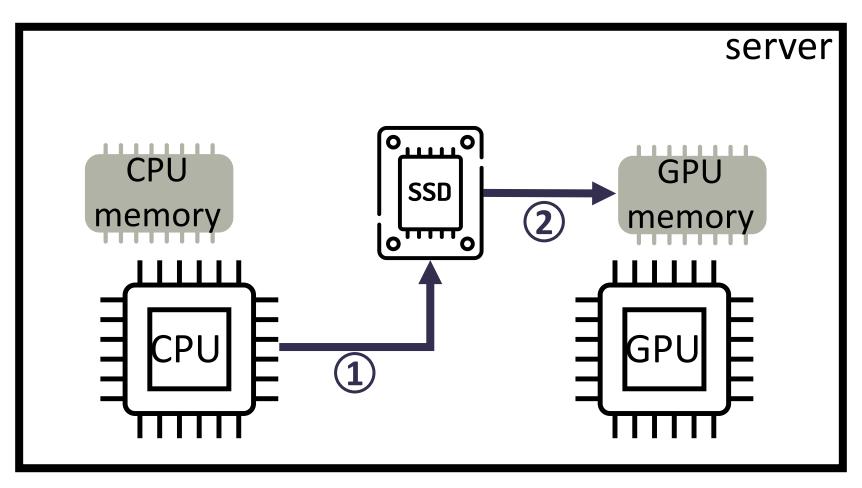
conventional: CPU-centric



- ✓ ecosystem support
- × CPU-bound & overhead from memory copy

GDS: GPU-centric & CPU-initiated

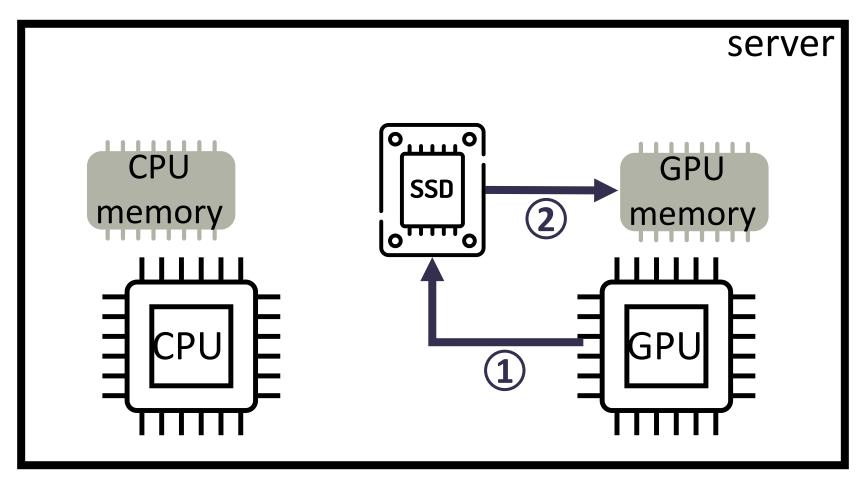
GPU Direct Storage [NVIDIA'19]



- ✓ eliminates the extra memory copy
- × still CPU-bound

BaM: GPU-centric & GPU-initiated

Big Accelerator Memory [ASPLOS'23]



- ✓ eliminates the CPU on the path
- ecosystem missing & saturates GPU

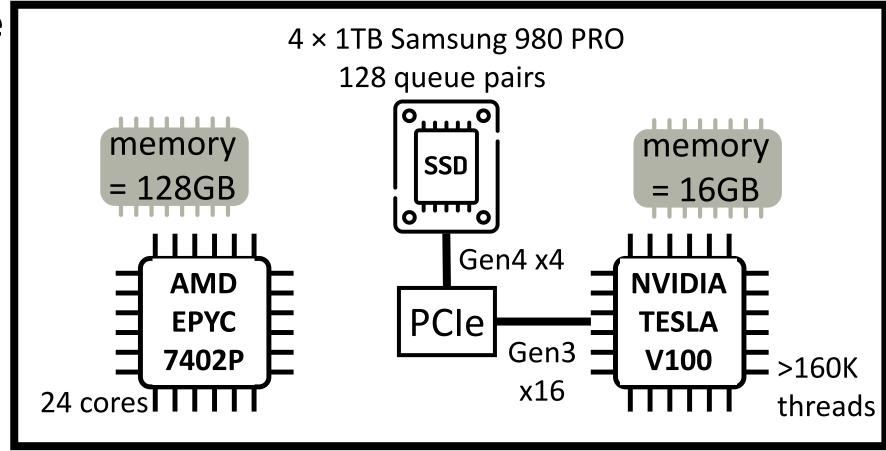
CPU- vs GPU-centric storage access

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM

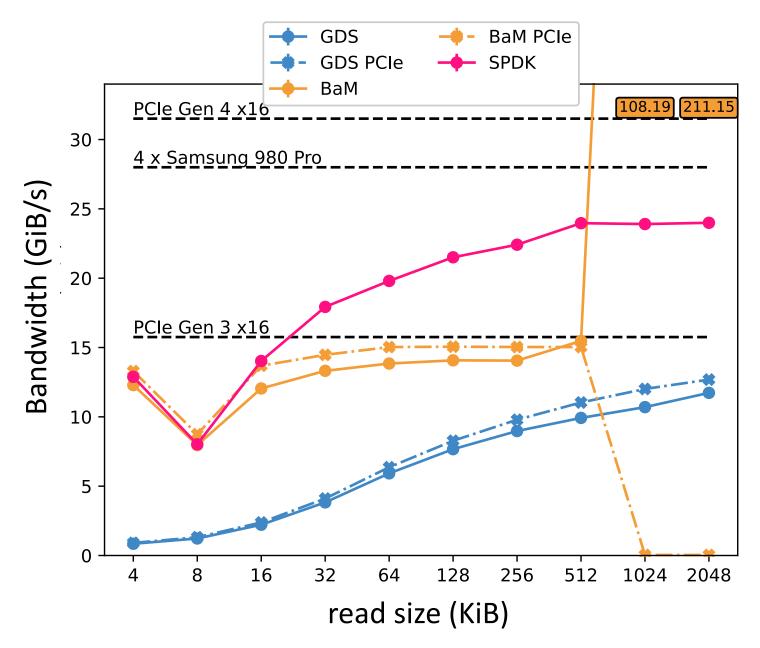
workload: random reads

→ each mechanism has their own tool for benchmarking

hardware



bandwidth utilization – 4 SSDs & PCIe



GDS is CPU-compute heavy.

→ 16 logical cores utilized

BaM is limited by the PCIe Gen3 link & heavy on the GPU resources.

→ whole GPU utilized

CPU-centric SPDK is resource-efficient but has a longer path to the GPU.

→ 2 logical cores utilized

path to GPU-centric storage access

- need to reduce the dependency on CPUs for more efficient deep learning pipelines
- GPU-centric data path is a way to do that
 & we have the mechanisms today (e.g., GDS, BaM)
 - GDS has dependency on CPUs still
 - BaM requires a lot of GPU resources

- → when to use which mechanism while being resource-aware?
- → how to best integrate them into popular deep learning frameworks (or GPU databases) for wider-scale use?

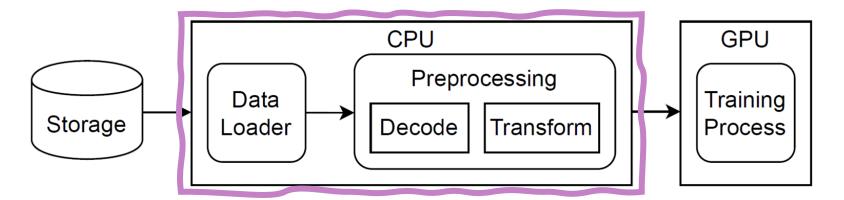
deep learning with fewer resources

GPU-centric data path

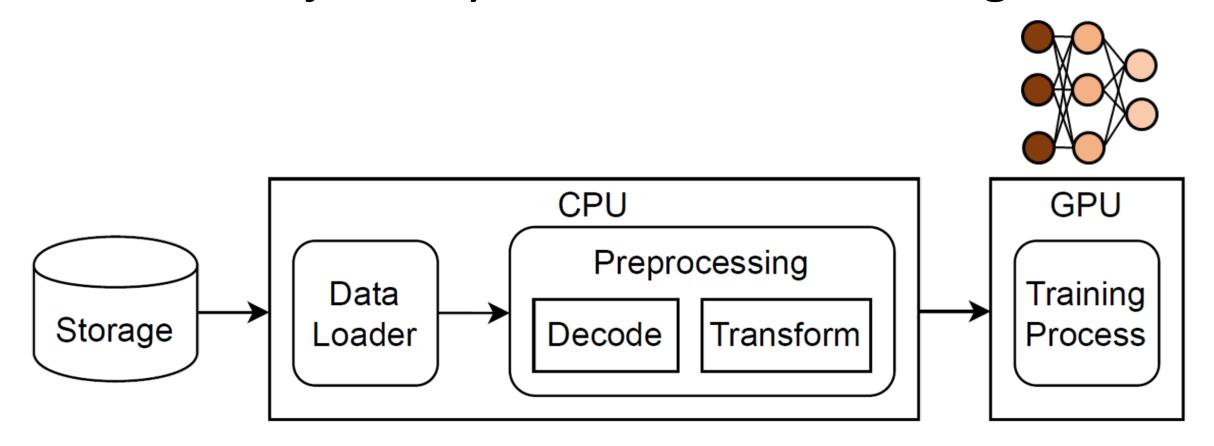
data & work sharing

<u>TensorSocket: Shared Data Loading for Deep Learning Training</u>
Ties Robroek, Neil Kim Nielsen, Pınar Tözün.
SIGMOD 2026

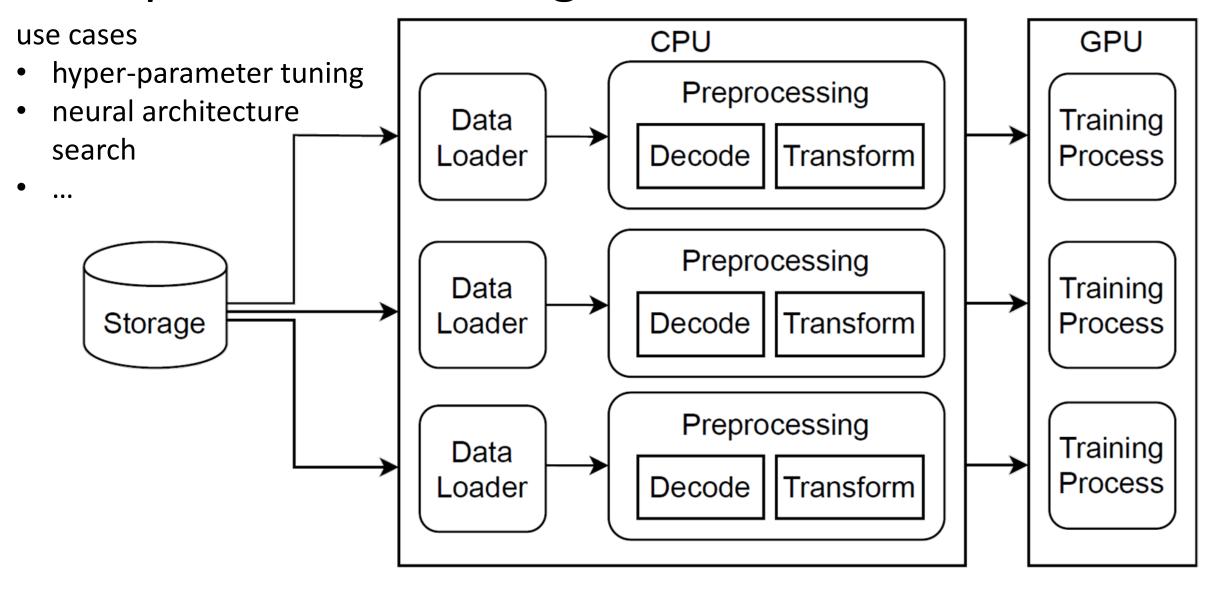
impact of data selection



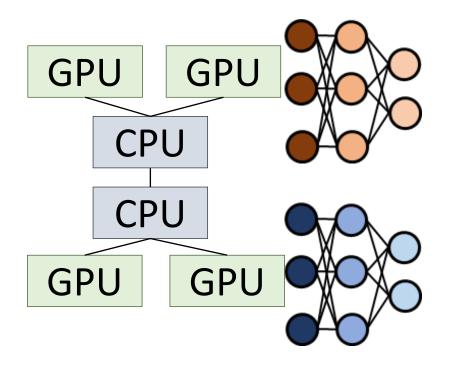
conventional journey of data while training

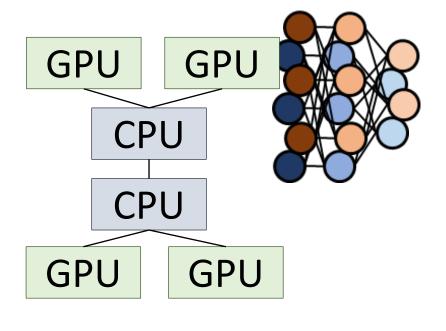


multiple model training on the same data



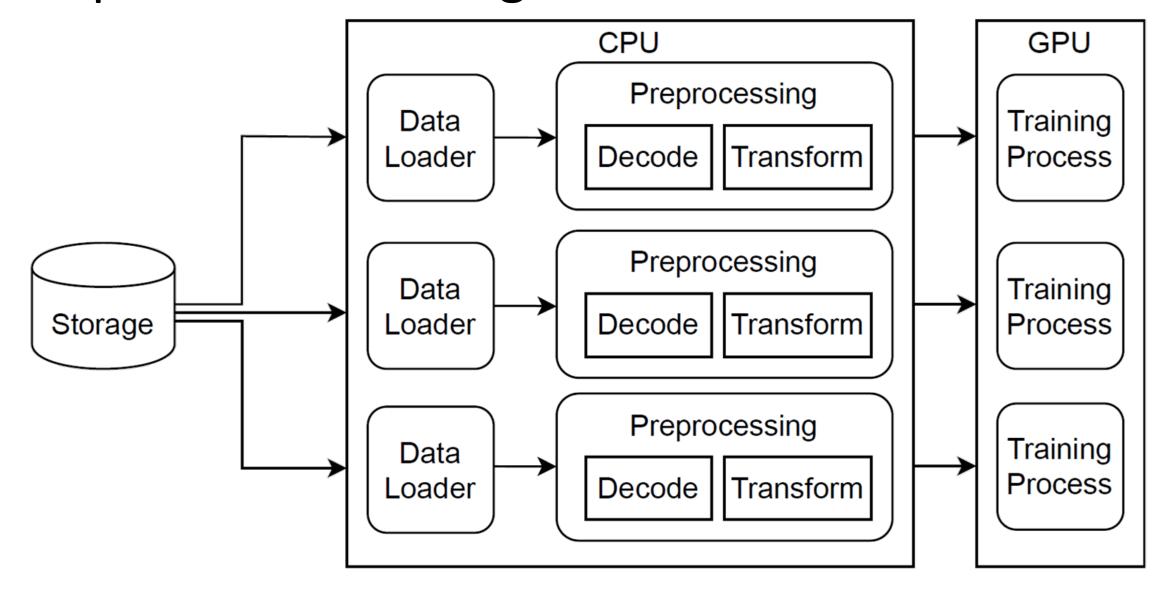
collocated training





- → training more models with fewer hardware resources
- → leads to better hardware utilization & reduces costs

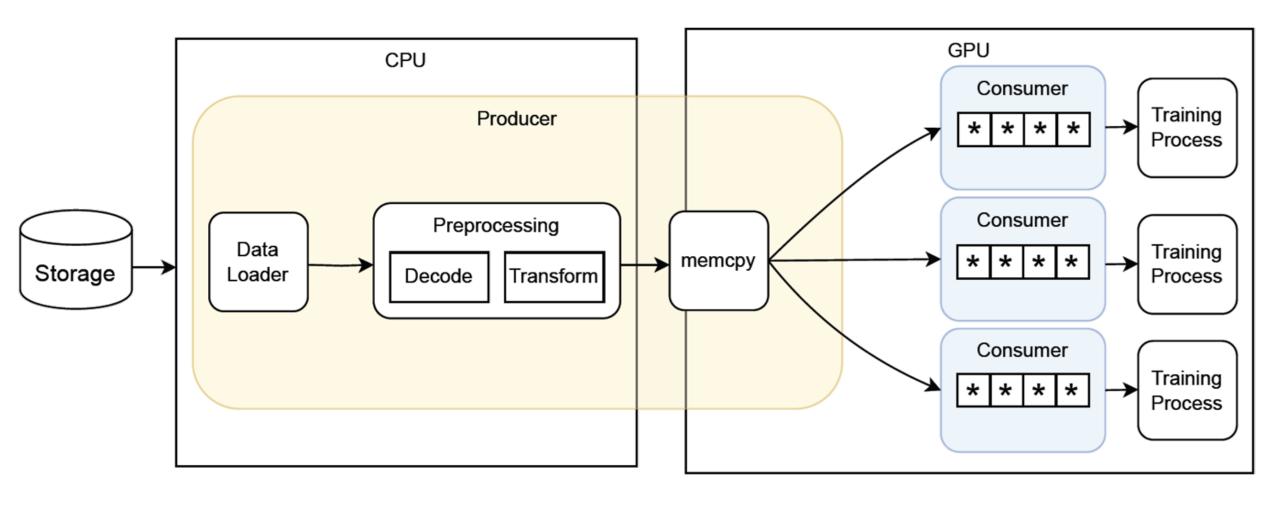
multiple model training on the same data



redundant work & CPU use!

data sharing for collocated training

TensorSocket

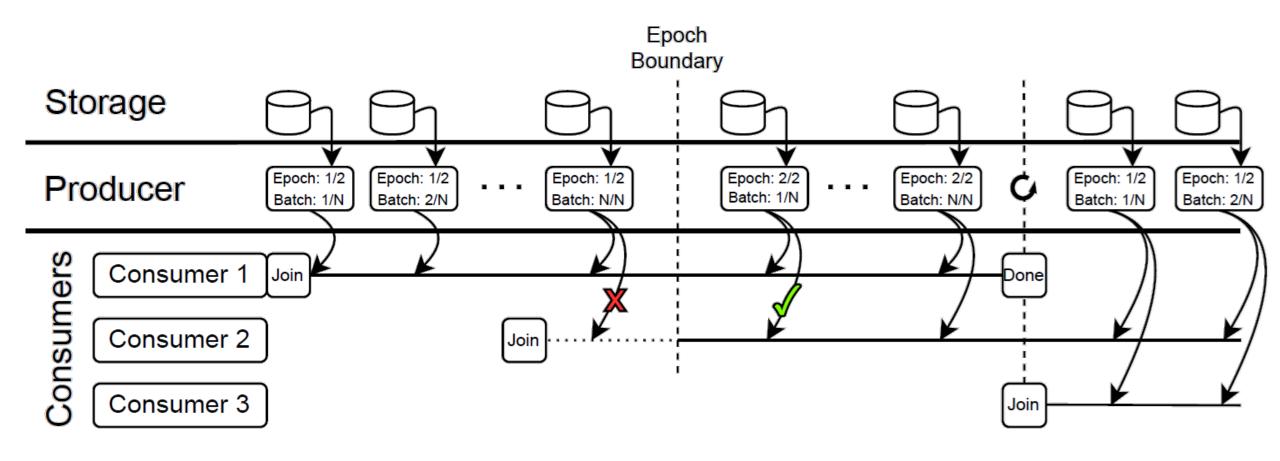


minimize the redundancy!

TensorSocket requirements & limitations

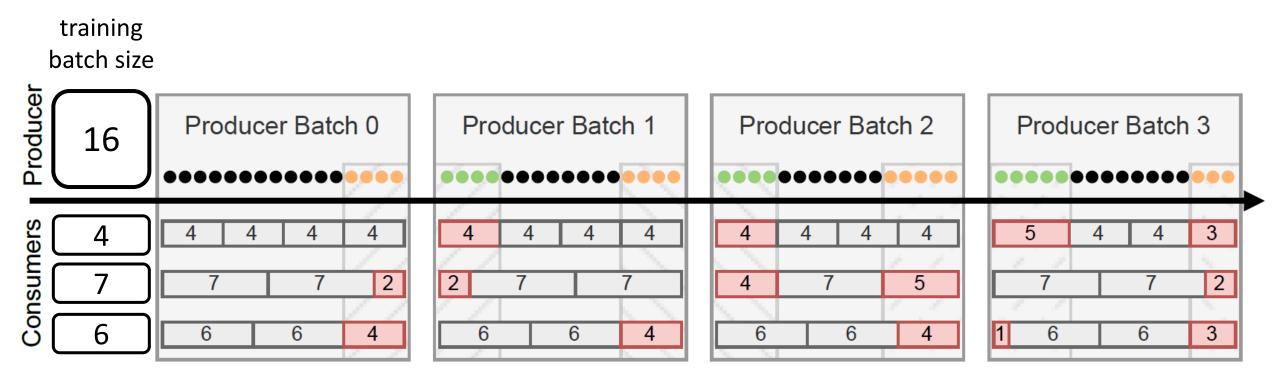
- → consumers go through the same dataset at the same rate but consumers can ...
- join at different epochs of training
- have different batch sizes
- be different models

consumers joining at different epochs



trade-off of training latency for throughput & resources. training is trail-&-error \rightarrow latency is less critical.

flexible batch sizing



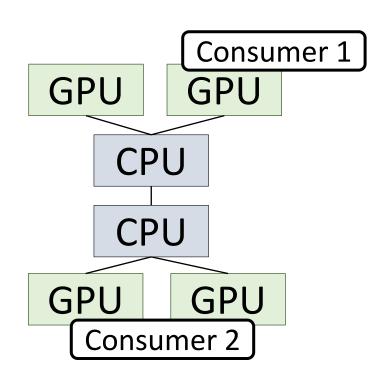
trade-off of repeated data to get flexibility. in practice, batch sizes tend to be multiples of 2.

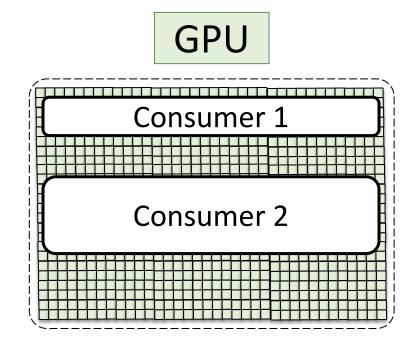
different consumers / models

Consumer 1

MobileNet Small

Consumer 2 <u>MobileNet Large</u>





can adjust the hardware resources per consumer to ensure each goes over the data at the same rate

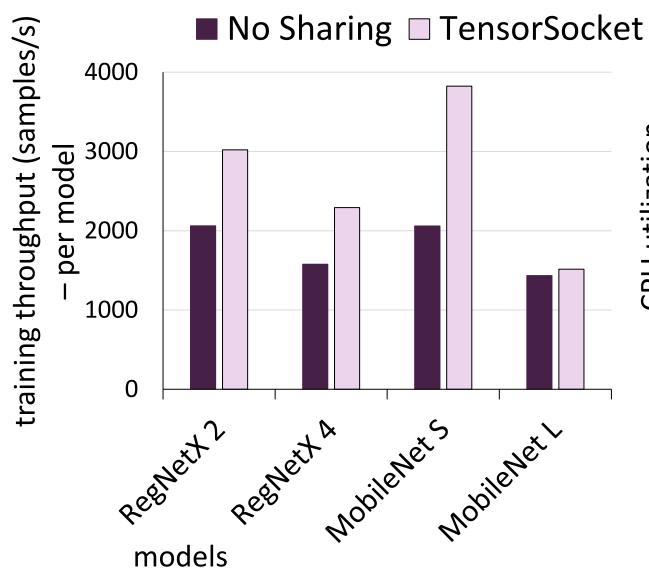
TensorSocket requirements & limitations

- → consumers go through the same dataset at the same rate but consumers can ...
- join at different epochs of training
- have different batch sizes
- be different models
- → target is smaller scale

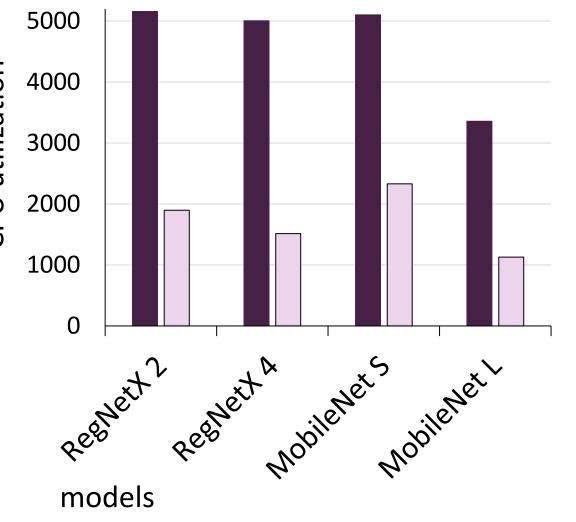
- Varoquaux et al. <u>Hype, Sustainability, and the</u>
 <u>Price of the Bigger-is-Better Paradigm in Al</u>
- Margot Seltzer, SIGMOD'25 keynote
- collocation of model training on a single server
- models fit into the memory of a single GPU not everyone needs "big" models & scale!
 for larger scales, check out tf.data service, CoorDL ...

[<u>SoCC'23</u>]

PVLDB'21]

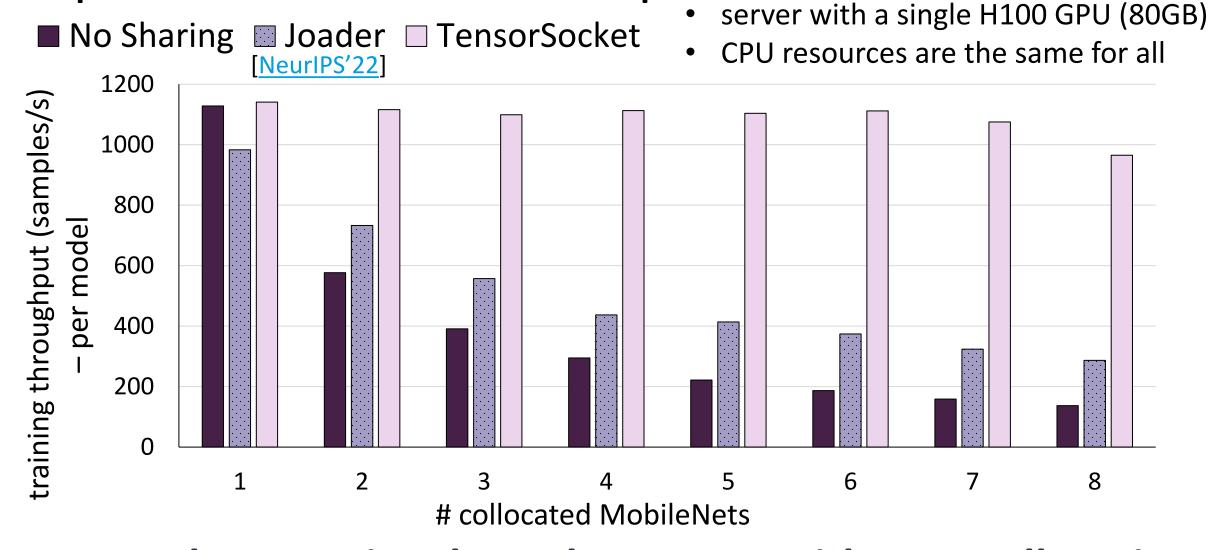


- on PyTorch
 - a server with 4 A100 (40GB) GPUs
 - one model training on each



higher overall throughput & reduced CPU need!

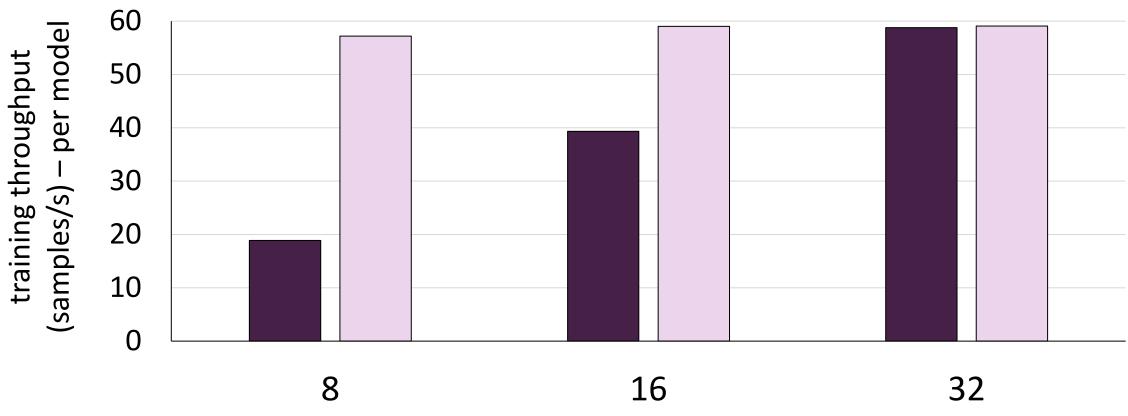
comparison to other techniques



TensorSocket sustains throughput even with GPU collocation & reduces both CPU and GPU needs for the whole workload. 31

cloud cost savings

- No Sharing ☐ TensorSocket
- CLMR (audio classification model training)
- 4-way collocation



vCPUs (AWS G5 instances with one A10 GPU)

75% less vCPU need for the same training throughput → 50% cost savings on AWS

sharing for deep learning training

workload collocation allows data & work sharing

 TensorSocket enables data & work sharing for collocated training jobs on the same dataset.

reduces both the CPU & GPU needs (& costs) of training while increasing training throughput!

deep learning with fewer resources

GPU-centric data path

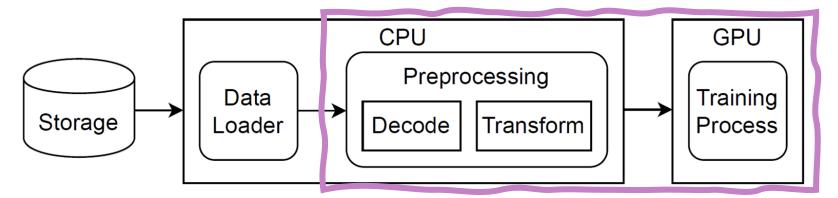
data & work sharing

Collaboration started at 2024 Dagstuhl seminar:

Resource-Efficient Machine Learning.

impact of data selection

T. Robroek, M. Böther, *N. Christiansen, D. Sepehri*, D. Kainmüller, T. Rekatsinas, S. Scherzinger, A. Klimovic, P. Tözün.



why data selection?

reduce the dataset size

increase model accuracy

fine-tuning

- unclear impact on the end-to-end training time!
- → trade-off: computational complexity vs "better" data selection

preliminary results

base model = Llama-3.2-1B-Instruct dataset = TruthfulQA

server with a single H100 GPU (80GB)

	duration (mins)	GPU energy use (Wh)	accuracy gain over base model
LESS (25%) [ICML'24]	318	1099	80%
Full	84	417	84%
Random (50%)	43	215	63%
Random (25%)	23	118	39%

if the data selection can be used across different finetuning processes, the costs may amortize.

deep learning with fewer resources

Path to GPU-Initiated I/O for Data-Intensive Systems

Karl B. Torp, Simon Lund, Pınar Tözün.

DaMoN 2025

GPU-centric data path

data & work sharing

<u>TensorSocket: Shared Data Loading for Deep Learning Training</u>
Ties Robroek, Neil Kim Nielsen, Pınar Tözün.
SIGMOD 2026

impact of data selection

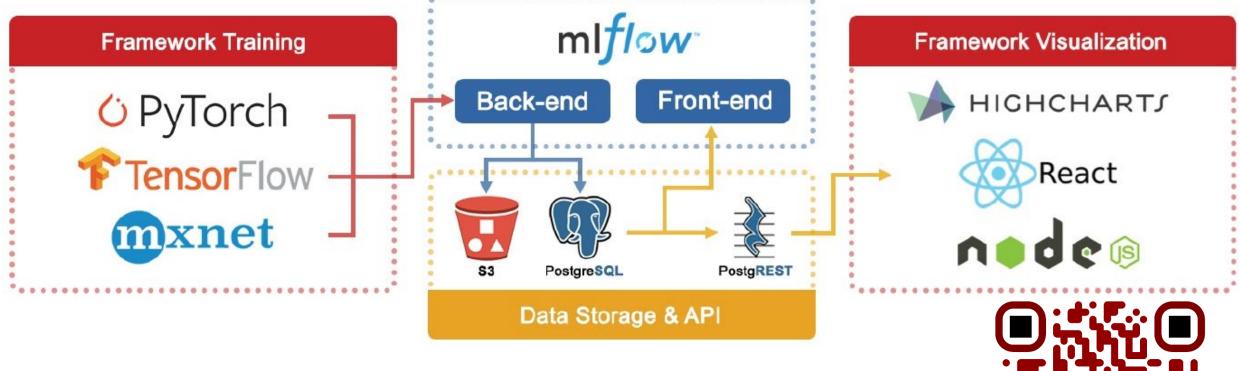
Collaboration started at 2024 Dagstuhl seminar:

Resource-Efficient Machine Learning.

- T. Robroek, M. Böther, N. Christiansen, D. Sepehri, D. Kainmüller,
- T. Rekatsinas, S. Scherzinger, A. Klimovic, P. Tözün.

how to monitor hardware? - radT

[DEEM'23]



- easy, extensible, and scalable tracking of hardware metrics (GPU utilization, storage access, carbon footprint ...)
- → frontend for data exploration

used by our group & data scientists @ITU for systematic benchmarking of deep learning training

RAD - resource-aware data systems

postdocs

Ties Robroek

Ehsan Yousefzadeh-Asl-Miandoab

phd students

Robert Bayer

Jens Birk Andersen

collaborators

Pamela Delgado HES-SO

Tilmann Rabl HPI

Ana Klimovic ETH

Julian Priest ITU

deep learning with fewer resources

Path to GPU-Initiated I/O for Data-Intensive Systems

Karl B. Torp, Simon Lund, Pınar Tözün.

GPU-centric data path

DaMoN 2025

data & work sharing

<u>TensorSocket: Shared Data Loading for Deep Learning Training</u>
Ties Robroek, Neil Kim Nielsen, Pınar Tözün.
SIGMOD 2026

impact of data selection

Collaboration started at 2024 Dagstuhl seminar:

Resource-Efficient Machine Learning.

- T. Robroek, M. Böther, N. Christiansen, D. Sepehri, D. Kainmüller,
- T. Rekatsinas, S. Scherzinger, A. Klimovic, P. Tözün.

thank you!