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language model training (2017 — today)
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deep learning hardware
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deep learning commodity hardware
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central processing unit graphics processing unit
=>» several (complex) cores =>» many (simple) cores
=>» good for latency-oriented tasks =2 good for throughput-oriented
& single-core performance & embarrassingly parallel tasks
* throughput- vs latency-oriented égood for deep learning

designs exist among CPUs as well « e.g., large matrix operations



deep learning hardware

e tend to be more efficient
 but less accessible

GPU | GPU TPU | TPU
CPU CPU
C;U C;U

GPU | GPU TPU TPU

costs & progress depend on the performance &
utilization of the available hardware.



NVIDIA GPUs (2012 —2023)
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sources: figure by Bill Dally, NVIDIA & *Gao et al. “An Empirical Study on Low GPU Utilization of Deep Learning Jobs.” ICSE 24



https://blogs.nvidia.com/blog/hot-chips-dally-research/
https://www.microsoft.com/en-us/research/wp-content/uploads/2024/01/gpu-util-icse2024.pdf

carbon footprint of language model traininF
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can we do better while using fewer resources?
model accuracy cannot be the only metric to aim for!

source: Stanford Al Index Report 2025
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deep learning with fewer resources

\

- GPU-centric data path
- data & work sharing — for model training

- impact of data selection

——




journey of data in deep learning training

CPU GPU
4 ™
C ( ) Preprocessing ()
; Data E i Training
Storage Loader Decode | | Transform Process
\—// g V4 \ / \ /
CPU feeds the GPU

 16-64 CPU cores per GPU (recommended)
e 96 CPU cores per TPU*

=» otherwise, GPU/TPU may be underutilized
=» can we do more with fewer CPUs & less of the CPU?

*Audibert et al., “tf.data service: A Case for Disaggregating IVIL Input Data Processing.” ACM SoCC 2023 9
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deep learning with fewer resources

Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pinar Tozln.

« GPU-centric data path PaMon2025

- data & work sharing

- impact of data selection

CPU GPU
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Storage > Loader Decode | |Transform Process
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deep learning with fewer resources

Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pinar Tozln.

« GPU-centric data path PaMon2025

- data & work sharing

- impact of data selection

CPU GPU
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target hardware setup
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* PCle is dropped in the remaining figures for the sake of simplicity in illustrations.



conventional: CPU-centric

server

CPU GPU
memory @ memory

5

v’ ecosystem support
x CPU-bound & overhead from memory copy




GDS: GPU-centric & CPU-initiated

GPU Direct

Storage
[NVIDIA’19] SEerver

CPU |
memory (@  memory

v’ eliminates the extra memory copy
x still CPU-bound




BaM: GPU-centric & GPU-initiated

Big
Accelerator
Memory
[ASPLOS’23]

server

CPU
memory memory

v’ eliminates the CPU on the path
X ecosystem missing & saturates GPU




CPU- vs GPU-centric storage access

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM

workload: random reads
- each mechanism has their own tool for benchmarking

hardware

4 x 1TB Samsung 980 PRO
128 queue pairs

memory memory

=128GB = 16GB
o

Gen4 x4
NVIDIA
PCle TESLA
Gen3

V100
x16

24 cores




bandwidth utilization — 4 SSDs & PCle

—— GDS

Bandwidth (GiB/s)
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—$- GDSPCle —— SPDK

PCle Gen 4 x16

BaM

BaM PCle

[108.19][211.15

PCle Gen 3 x16

3|2 6|4 1&8 2!I56
read size (KiB)

512 1024 2048

GDS is CPU-compute heavy.
=» 16 logical cores utilized

BaM is limited by the
PCle Gen3 link & heavy on

the GPU resources.
=» whole GPU utilized

CPU-centric SPDK is

resource-efficient but has a

longer path to the GPU.
=» 2 logical cores utilized
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path to GPU-centric storage access
* need to reduce the dependency on CPUs
for more efficient deep learning pipelines

« GPU-centric data path is a way to do that
& we have the mechanisms today (e.g., GDS, BaM)

o GDS has dependency on CPUs still
o BaM requires a lot of GPU resources

= when to use which mechanism while being resource-aware?

= how to best integrate them into popular deep learning
frameworks (or GPU databases) for wider-scale use?

18



deep learning with fewer resources

- GPU-centric data path

TensorSocket: Shared Data Loading for Deep Learning Training

o data & WOrk Sha I'i ng Ties Robroek, Neil Kim Nielsen, Pinar Tozin.
SIGMOD 2026

- impact of data selection

CPU GPU

C D Preprocessing
J | Data || | Training
Storage Loader Decode | |Transform Process

19
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conventional journey of data while trainiF
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multiple model training on the same data i

use Cases

* hyper-parameter tuning
 neural architecture
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collocated training

GPU | GPU GPU | GPU
CPU CPU
cPu cPu

GPU | GPU GPU | GPU

=>» training more models with fewer hardware resources
=» leads to better hardware utilization & reduces costs
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multiple model training on the same data i
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data sharing for collocated training

TensorSocket
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minimize the redundancy!
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TensorSocket requirements & limitations

=>» consumers go through the same dataset at the same rate

but consumers can ...

* join at different epochs of training
* have different batch sizes

* be different models

25



consumers joining at different epochs
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trade-off of training latency for throughput & resources.
training is trail-&-error = latency is less critical.
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flexible batch sizing

Producer

training
batch size
( N
16 Producer Batch 0 Producer Batch 1 Producer Batch 2 Producer Batch 3
\ ) eeocococeeo00 00000000 0000000 00000000

Consumers

|||+

4 | 4 | 4 4 | 4 | 4 | 4 4 | 4 | 4 | 4 5 4 | 4 |3
7 7 7 7 4 7 5 7 7
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trade-off of repeated data to get flexibility.
in practice, batch sizes tend to be multiples of 2.
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different consumers / models

[ Consumer 1 GPU
Consumer 1 GPU GPU :fETTTF Eauet Consun;erl
[ MobileNet SmaIlJ CPU |
| i il
Consumer 2 CPU | Consumer 2 i
[ MobileNet Large J GPU GPU i |
Consumer2 |

can adjust the hardware resources per consumer to
ensure each goes over the data at the same rate

28



TensorSocket requirements & limitations

=>» consumers go through the same dataset at the same rate
but consumers can ...

* join at different epochs of training

* have different batch sizes

* be different models

* Varoquaux et al. Hype, Sustainability, and the
Price of the Bigger-is-Better Paradigm in Al

9 target iS Sma"er Scale * Margot Seltzer, SIGMOD’25 keynote
e collocation of model training on a single server
 models fit into the memory of a single GPU

not everyone needs “big” models & scale!

for larger scales, check out tf.data service, CoorDL ...
[SoCC’23] [PVLDB’21]
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impact of data sharing * on PyTorch
e aserver with 4 A100 (40GB) GPUs

g L] NO Sharing L] TenSOI‘SOCket * one model training on each
L 4000 5000
E C
& 5 3000 & 4000
£ B IS
a ¢ = 3000
© + 2000 =
Q
o o S 2000
= | S
1
o0 000 I I 1000
S
g 0 I 0
=)
RO UL T
e e S 3 ¢ ¢ N N
Q? Q? .§Q/ .§Q/ Q? Q? .§Q/ .§Q/
Qg/ Q‘QJ @60 @60 Qg/ Q‘e @60 @60
models models

higher overall throughput & reduced CPU need! ..



comparison to other techniques

: * server with a single H100 GPU (80GB
B No Sharing EJoader O TensorSocket | ;| g H ] ( ! )
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TensorSocket sustains throughput even with GPU collocation
& reduces both CPU and GPU needs for the whole workload. ..

training throughput (samples/s)
— per model
|


https://openreview.net/forum?id=tZUOiVGO6jN

cloud cost savings
* CLMR (audio classification model training)

B No Sharing [ TensorSocket . 4-way collocation

60
50
40
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20

10 .
0
3 16 32

vCPUs (AWS G5 instances with one A10 GPU)
75% less vCPU need for the same training throughput
=» 50% cost savings on AWS .

training throughput
(samples/s) — per model




sharing for deep learning training

- workload collocation allows data & work sharing

« TensorSocket enables data & work sharing for
collocated training jobs on the same dataset.

reduces both the CPU & GPU needs (& costs) of
training while increasing training throughput!

33



deep learning with fewer resources

- GPU-centric data path

- data & work sharing

Collaboration started at 2024 Dagstuhl seminar:

Resource-Efficient Machine Learning.

T. Robroek, M. Bother, N. Christiansen, D. Sepehri, D.

° |m pa Ct Of data SeIeCtIOn $§;r[1]r:.ijller, T. Rekatsinas, S. Scherzinger, A. Klimovic, P.

CPU

Preprocessing

Data
Loader

Decode | | Transform

GPU

Training
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why data selection?

* reduce the dataset size
* increase model accuracy
* fine-tuning
=>» unclear impact on the end-to-end training time!

=> trade-off: computational complexity
vs “better” data selection

35



preliminary results

base model = Llama-3.2-1B-Instruct server with a single H100 GPU (80GB)
dataset = TruthfulQA

duration GPU energy use accuracy gain

(mins) (Wh) over base model
LESS (25%)'““=* 318 1099 80%
Full 34 417 34%
Random (50%) 43 215 63%
Random (25%) 23 118 39%

if the data selection can be used across different fine-
tuning processes, the costs may amortize.
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https://arxiv.org/abs/2402.04333

deep learning with fewer resources

Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pinar Tozln.

« GPU-centric data path PaMon2025

TensorSocket: Shared Data Loading for Deep Learning Training

o data & WOrk Sha I'i ng Ties Robroek, Neil Kim Nielsen, Pinar Tozin.
SIGMOD 2026

- impact of data selection

Collaboration started at 2024 Dagstuhl seminar:
Resource-Efficient Machine Learning.

T. Robroek, M. Bother, N. Christiansen, D. Sepehri, D. Kainmuller,
T. Rekatsinas, S. Scherzinger, A. Klimovic, P. Tozun.

37


https://arxiv.org/abs/2409.18749
https://arxiv.org/abs/2409.18749
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311

how to monitor hardware? — radT T

lfiow
O PyTorch - —' B HIGHCHARTS

‘¢ TensorFlo ‘L l | React
- @Xnet ” = g L Pn%m | . n_. dc

=>» easy, extensible, and scalable tracking of hardware metrics :'-':' K';?Bt
(GPU utilization, storage access, carbon footprint ...) A
=>» frontend for data exploration

used by our group & data scientists @ITU for systematlc
benchmarking of deep learning training ,



https://itu-dasyalab.github.io/RAD/publication/papers/DEEM2023.pdf

MD - resource-aware data systems
postdocs phd students

Ties Ehsan Robert Jens Birk

Q)

SI\MSUNG

Robroek Yousefzadeh- Bayer Andersen
Asl-Miandoab

collaborators

Pamela Delgado  Tilmann Rabl  Ana Klimovic Julian Priest
HES-SO HPI ETH ITU 39



deep learning with fewer resources

Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pinar Tozln.

« GPU-centric data path PaMon2025

TensorSocket: Shared Data Loading for Deep Learning Training

o data & WOrk Shal"lng Ties Robroek, Neil Kim Nielsen, Pinar Tozin.
SIGMOD 2026

- impact of data selection

m! Collaboration started at 2024 Dagstuhl seminar:
E E Resource-Efficient Machine Learning.
E.-?" T. Robroek, M. Bother, N. Christiansen, D. Sepehri, D. Kainmuller,
L-t- K Dl‘l f o T. Rekatsinas, S. Scherzinger, A. Klimovic, P. Tozun.

ELF% thank you!
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