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language model training (2017 – today)
5 orders of magnitude 
increase in training cost.

7 orders of magnitude growth 
in computational footprint.

https://aiindex.stanford.edu/report/


deep learning hardware
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deep learning commodity hardware
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central processing unit
 several (complex) cores
 good for latency-oriented tasks

& single-core performance
• throughput- vs latency-oriented 

designs exist among CPUs as well

graphics processing unit
many (simple) cores
 good for throughput-oriented

& embarrassingly parallel tasks
good for deep learning
• e.g., large matrix operations



deep learning hardware
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costs & progress depend on the performance & 
utilization of the available hardware.

• tend to be more efficient
• but less accessible



sources: figure by Bill Dally, NVIDIA & *Gao et al. “An Empirical Study on Low GPU Utilization of Deep Learning Jobs.” ICSE 24 6

NVIDIA GPUs (2012 – 2023) 
 only an order of magnitude 
increase in performance
since Transformers (2017)!
 ~50% utilization in real-world.

7 orders of 
magnitude 
growth in 
computational 
footprint.

*

https://blogs.nvidia.com/blog/hot-chips-dally-research/
https://www.microsoft.com/en-us/research/wp-content/uploads/2024/01/gpu-util-icse2024.pdf
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carbon footprint of language model training
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can we do better while using fewer resources?
model accuracy cannot be the only metric to aim for!

~1 year in 
human life

https://aiindex.stanford.edu/report/


• GPU-centric data path

• data & work sharing

• impact of data selection

deep learning with fewer resources
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for model training



journey of data in deep learning training
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CPU feeds the GPU
• 16-64 CPU cores per GPU (recommended)
• 96 CPU cores per TPU*

*Audibert et al., “tf.data service: A Case for Disaggregating ML Input Data Processing.” ACM SoCC 2023

otherwise, GPU/TPU may be underutilized
can we do more with fewer CPUs & less of the CPU?

https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826


• GPU-centric data path

• data & work sharing

• impact of data selection

deep learning with fewer resources
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Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pınar Tözün.
DaMoN 2025

https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232


• GPU-centric data path

• data & work sharing
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deep learning with fewer resources
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Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pınar Tözün.
DaMoN 2025

https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232


target hardware setup
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conventional: CPU-centric
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 ecosystem support
× CPU-bound & overhead from memory copy



GDS: GPU-centric & CPU-initiated
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 eliminates the extra memory copy
× still CPU-bound

GPU Direct 
Storage

[NVIDIA’19]



BaM: GPU-centric & GPU-initiated
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Big 
Accelerator

Memory
[ASPLOS’23]

 eliminates the CPU on the path
× ecosystem missing & saturates GPU



CPU- vs GPU-centric storage access
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workload: random reads
 each mechanism has their own tool for benchmarking

memory
= 128GB

PCIe
AMD
EPYC

7402P

memory
= 16GB

NVIDIA
TESLA
V100

24 cores
>160K 
threads

4 × 1TB Samsung 980 PRO    
       128 queue pairs

Gen3
x16

Gen4 x4

hardware

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM



bandwidth utilization – 4 SSDs & PCIe 
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GDS is CPU-compute heavy.
 16 logical cores utilized

BaM is limited by the
PCIe Gen3 link & heavy on 
the GPU resources.
 whole GPU utilized

CPU-centric SPDK is 
resource-efficient but has a 
longer path to the GPU.
 2 logical cores utilized

read size (KiB)
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• need to reduce the dependency on CPUs
for more efficient deep learning pipelines

• GPU-centric data path is a way to do that
& we have the mechanisms today (e.g., GDS, BaM)
o GDS has dependency on CPUs still
o BaM requires a lot of GPU resources

when to use which mechanism while being resource-aware?
how to best integrate them into popular deep learning 

frameworks (or GPU databases) for wider-scale use?

path to GPU-centric storage access

18



• GPU-centric data path

• data & work sharing

• impact of data selection

deep learning with fewer resources

19

TensorSocket: Shared Data Loading for Deep Learning Training
Ties Robroek, Neil Kim Nielsen, Pınar Tözün.
SIGMOD 2026

https://dl.acm.org/doi/10.1145/3749185
https://dl.acm.org/doi/10.1145/3749185


conventional journey of data while training
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multiple model training on the same data
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use cases
• hyper-parameter tuning
• neural architecture 

search
• …



collocated training
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 training more models with fewer hardware resources
 leads to better hardware utilization & reduces costs
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multiple model training on the same data

23redundant work & CPU use!



data sharing for collocated training

24

minimize the redundancy!

TensorSocket



TensorSocket requirements & limitations
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 consumers go through the same dataset at the same rate
but consumers can …
• join at different epochs of training
• have different batch sizes
• be different models



consumers joining at different epochs
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trade-off of training latency for throughput & resources.
training is trail-&-error  latency is less critical.



flexible batch sizing

27

trade-off of repeated data to get flexibility.
in practice, batch sizes tend to be multiples of 2.

16

4
7
6

training
batch size



different consumers / models
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can adjust the hardware resources per consumer to 
ensure each goes over the data at the same rate

Consumer 1
MobileNet Small

Consumer 2
MobileNet Large

CPU

GPU

CPU

GPU

GPUGPU

Consumer 1

Consumer 2

GPU

Consumer 1

Consumer 2



TensorSocket requirements & limitations
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 consumers go through the same dataset at the same rate
but consumers can …
• join at different epochs of training
• have different batch sizes
• be different models

 target is smaller scale
• collocation of model training on a single server
• models fit into the memory of a single GPU 
not everyone needs “big” models & scale!
for larger scales, check out tf.data service, CoorDL …

• Varoquaux et al. Hype, Sustainability, and the 
Price of the Bigger-is-Better Paradigm in AI

• Margot Seltzer, SIGMOD’25 keynote 

[SoCC’23] [PVLDB’21]

https://arxiv.org/abs/2409.14160
https://arxiv.org/abs/2409.14160
https://arxiv.org/abs/2409.14160
https://arxiv.org/abs/2409.14160
https://arxiv.org/abs/2409.14160
https://arxiv.org/abs/2409.14160
https://arxiv.org/pdf/2210.14826
https://vldb.org/pvldb/vol14/p771-mohan.pdf


impact of data sharing

30higher overall throughput & reduced CPU need!
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No Sharing TensorSocket
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• on PyTorch
• a server with 4 A100 (40GB) GPUs
• one model training on each



comparison to other techniques
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TensorSocket sustains throughput even with GPU collocation
& reduces both CPU and GPU needs for the whole workload.
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No Sharing Joader TensorSocket • server with a single H100 GPU (80GB)
• CPU resources are the same for all[NeurIPS’22]

https://openreview.net/forum?id=tZUOiVGO6jN


cloud cost savings 
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75% less vCPU need for the same training throughput
 50% cost savings on AWS
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vCPUs (AWS G5 instances with one A10 GPU)

No Sharing TensorSocket
• CLMR (audio classification model training)
• 4-way collocation



sharing for deep learning training

• workload collocation allows data & work sharing

• TensorSocket enables data & work sharing for 
collocated training jobs on the same dataset. 

reduces both the CPU & GPU needs (& costs) of 
training while increasing training throughput!

33



• GPU-centric data path

• data & work sharing

• impact of data selection

deep learning with fewer resources
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Collaboration started at 2024 Dagstuhl seminar: 
Resource-Efficient Machine Learning.
T. Robroek, M. Böther, N. Christiansen, D. Sepehri, D. 
Kainmüller, T. Rekatsinas, S. Scherzinger, A. Klimovic, P. 
Tözün.

https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311


why data selection?

• reduce the dataset size 

• increase model accuracy

• fine-tuning  

35

unclear impact on the end-to-end training time!
trade-off: computational complexity

vs “better” data selection



preliminary results
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duration
(mins)

GPU energy use
(Wh)

accuracy gain
over base model

LESS (25%) 318 1099 80%
Full 84 417 84%
Random (50%) 43 215 63%
Random (25%) 23 118 39%

if the data selection can be used across different fine-
tuning processes, the costs may amortize.

base model = Llama-3.2-1B-Instruct
dataset = TruthfulQA

[ICML’24]

server with a single H100 GPU (80GB) 

https://arxiv.org/abs/2402.04333


• GPU-centric data path

• data & work sharing

• impact of data selection
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TensorSocket: Shared Data Loading for Deep Learning Training
Ties Robroek, Neil Kim Nielsen, Pınar Tözün.
SIGMOD 2026

Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pınar Tözün.
DaMoN 2025

Collaboration started at 2024 Dagstuhl seminar:
Resource-Efficient Machine Learning.
T. Robroek, M. Böther, N. Christiansen, D. Sepehri, D. Kainmüller, 
T. Rekatsinas, S. Scherzinger, A. Klimovic, P. Tözün.

https://arxiv.org/abs/2409.18749
https://arxiv.org/abs/2409.18749
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311


how to monitor hardware? – radT

 easy, extensible, and scalable tracking of hardware metrics
(GPU utilization, storage access, carbon footprint …)

 frontend for data exploration

38

[DEEM’23]

used by our group & data scientists @ITU for systematic 
benchmarking of deep learning training

https://itu-dasyalab.github.io/RAD/publication/papers/DEEM2023.pdf
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RAD - resource-aware data systems
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• GPU-centric data path

• data & work sharing

• impact of data selection

deep learning with fewer resources
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TensorSocket: Shared Data Loading for Deep Learning Training
Ties Robroek, Neil Kim Nielsen, Pınar Tözün.
SIGMOD 2026

Collaboration started at 2024 Dagstuhl seminar:
Resource-Efficient Machine Learning.
T. Robroek, M. Böther, N. Christiansen, D. Sepehri, D. Kainmüller, 
T. Rekatsinas, S. Scherzinger, A. Klimovic, P. Tözün.

thank you!

Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pınar Tözün.
DaMoN 2025

https://arxiv.org/abs/2409.18749
https://arxiv.org/abs/2409.18749
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
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