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journey of data in deep learning training
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CPU feeds the accelerators
• 16-64 cores per GPU (recommended)
• 96 cores per TPU*
 otherwise, accelerator may be underutilized
 can we do more with fewer CPUs?

*Audibert et al., “tf.data service: A Case for Disaggregating ML Input Data Processing.” ACM SoCC 2023



• data & work sharing
e.g., CoorDL [PVLDB’21], Joader [NeurIPS’22], tf.data service [SoCC’23]

• data pre-processing on the accelerator 
e.g., DALI [NVIDIA], FusionFlow [PVLDB’24]

• GPU-centric I/O path
• GPUDirect Storage (GDS)
• Big Accelerator Memory (BaM) 

reducing the CPU needs for deep learning
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what are the trade-offs 
of different options?



target hardware setup
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conventional: CPU-centric I/O
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GPUDirect: GPU-centric & CPU-initiated
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BaM: GPU-centric & GPU-initiated
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evaluation: CPU- vs GPU-centric I/O
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workload: random reads
• each mechanism has their own fio-like tool for benchmarking
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mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM



bandwidth utilization – 4 SSDs & PCIe 
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GDS is CPU-compute heavy.
 16 logical cores utilized

BaM is limited by the
PCIe Gen3 link & heavy on 
the GPU resources.
 whole GPU utilized

SPDK is the most resource-
efficient but has a longer 
path to the GPU.
 2 logical cores utilized
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when to use which mechanism
while being resource-aware?

how to best integrate these mechanisms 
into popular deep learning frameworks 
to allow wider-scale use?

path to GPU-centric I/O
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thank you!
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