

www.dasya.dk

www.itu.dk

quest to reduce dependency on CPUs in deep learning pipelines: GPU-centric IO

Karl B. Torp & Simon A. F. Lund *Samsung Semiconductor*

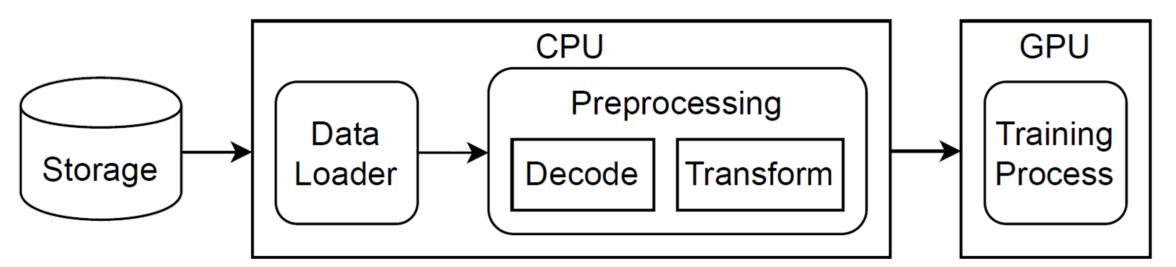
Denmark Research

Pınar Tözün IT University of Copenhagen

novo nordisk **foundation**

CHEOPS 31/03/2025 <u>pito@itu.dk</u> pinartozun.com

journey of data in deep learning training



CPU feeds the accelerators

- 16-64 cores per GPU (recommended)
- 96 cores per TPU*

• otherwise, accelerator may be underutilized • can we do more with fewer CPUs?

UNIVERSITY OF COPENHAGEN

reducing the CPU needs for deep learning

data & work sharing

e.g., CoorDL [PVLDB'21], Joader [NeurIPS'22], tf.data service [SoCC'23]

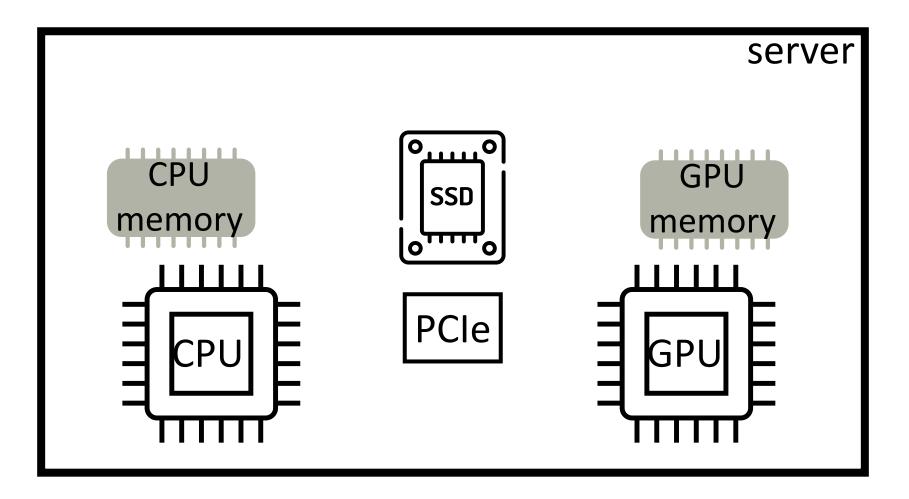
- data pre-processing on the accelerator e.g., DALI [NVIDIA], FusionFlow [PVLDB'24]
- GPU-centric I/O pathGPUDirect Storage (GDS)

 - **Big Accelerator Memory (BaM)** \bullet

what are the trade-offs of different options?

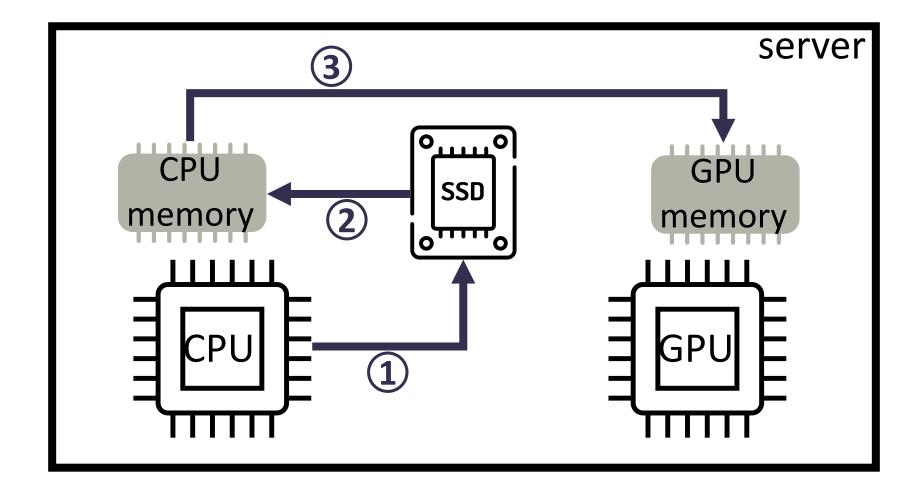
IT UNIVERSITY OF COPENHAGEN

target hardware setup

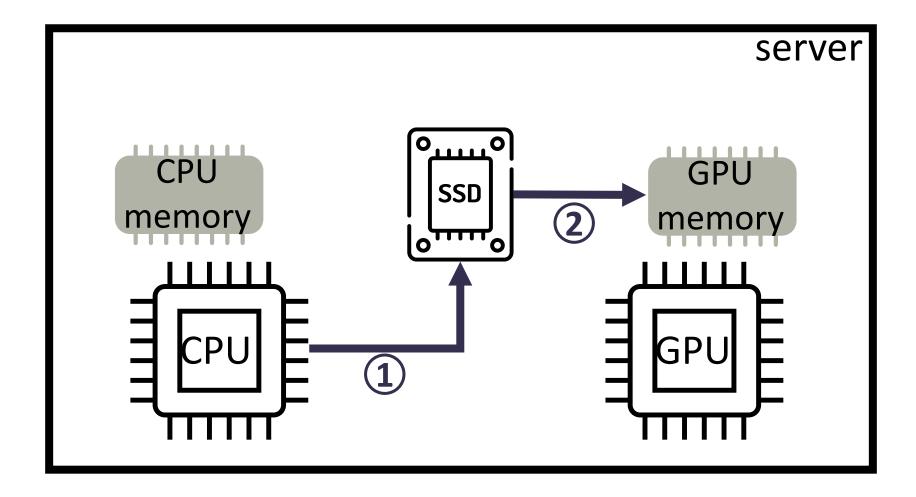


* PCIe is dropped in the remaining figures for the sake of simplicity in illustrations.

conventional: CPU-centric I/O

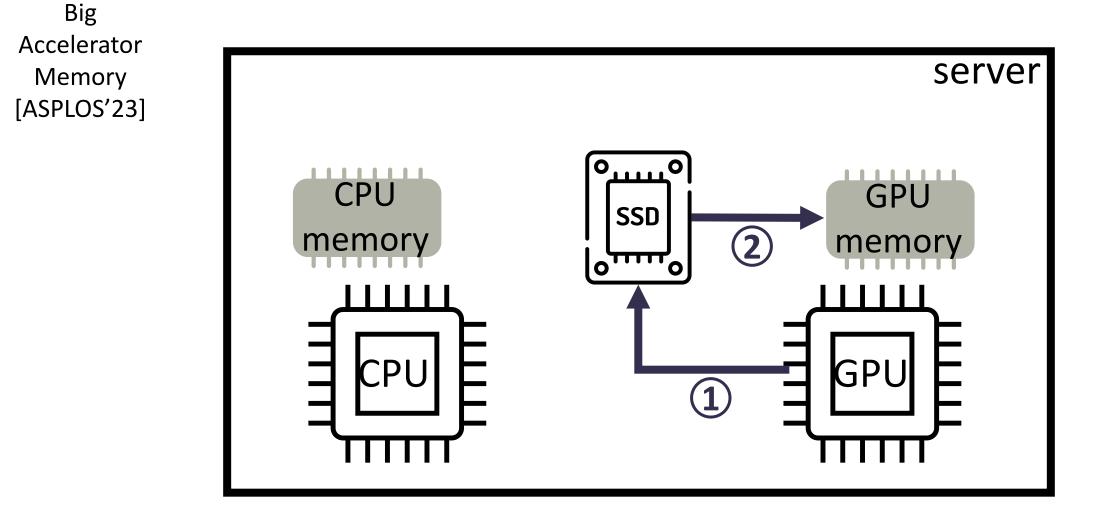


GPUDirect: GPU-centric & CPU-initiated



IT UNIVERSITY OF COPENHAGEN

BaM: GPU-centric & GPU-initiated



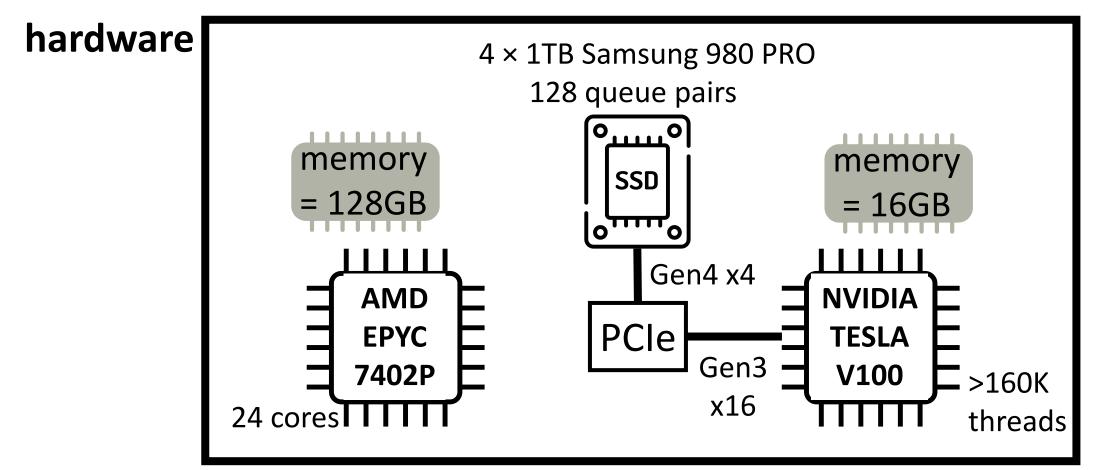
IT UNIVERSITY OF COPENHAGEN

evaluation: CPU- vs GPU-centric I/O

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM

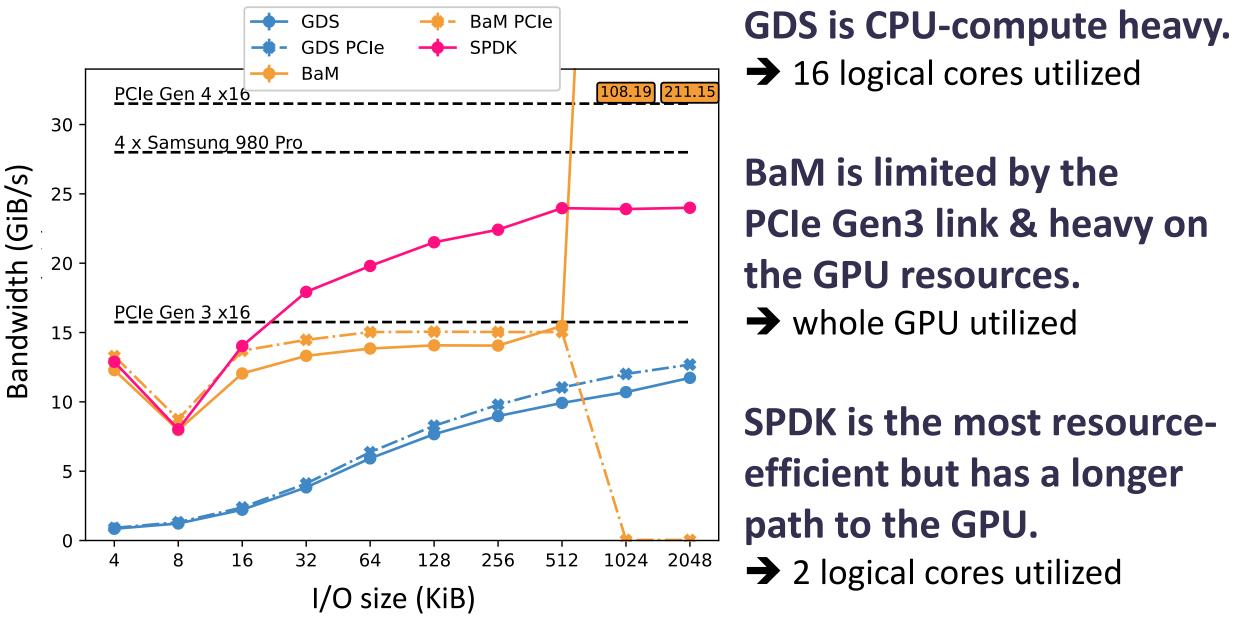
workload: random reads

• each mechanism has their own fio-like tool for benchmarking



IT UNIVERSITY OF COPENHAGEN

bandwidth utilization – 4 SSDs & PCIe



T UNIVERSITY OF COPENHAGEN

thank you!

Solution when to use which mechanism while being resource-aware?

path to GPU-centric I/O

How to best integrate these mechanisms into popular deep learning frameworks to allow wider-scale use?

pito@itu.dk