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journey of data in deep learning training
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CPU feeds the accelerators

e 16-64 cores per GPU (recommended)
* 96 cores per TPU*

=>» otherwise, accelerator may be underutilized
=» can we do more with fewer CPUs?

*Audibert et al., “tf.data service: A Case for Disaggregating ML Input Data Processing.” ACM SoCC 2023 2
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reducing the CPU needs for deep learning

* data & work sharing
e.g., CoorDL [PVLDB’21], Joader [NeurlPS’22], tf.data service [SoCC’23]

* data pre-processing on the accelerator
e.g., DALI [NVIDIA], FusionFlow [PVLDB’24]

GPU-centric I/O path

what are the trade-offs

e GPUDirect Storage (GDS) . .
of different options?

* Big Accelerator Memory (BaM)




target hardware setup

server

CPU GPU

memory memory

* PCle is dropped in the remaining figures for the sake of simplicity in illustrations.
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conventional: CPU-centric I/O
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GPUDirect: GPU-centric & CPU-initiated

server
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BaM: GPU-centric & GPU-initiated

Big
Accelerator
Memory server
[ASPLOS’23]

CPU
memory memory
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evaluation: CPU- vs GPU-centric I/O

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM

workload: random reads
 each mechanism has their own fio-like tool for benchmarking

hardware 4 x 1TB Samsung 980 PRO

128 queue pairs

©,,.,.,°

memory memory

SSD

=128GB = 16GB

lo""'o

Gen4 x4

NVIDIA

PCle TESLA

Gen3 V100
x16

24 cores




bandwidth utilization — 4 SSDs & PCle
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GDS is CPU-compute heavy.
=» 16 logical cores utilized

BaM is limited by the
PCle Gen3 link & heavy on

the GPU resources.
=» whole GPU utilized

SPDK is the most resource-
efficient but has a longer
path to the GPU.

=» 2 logical cores utilized
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path to GPU-centric /O
thank you!

: - O30
= when to use which mechanism : .
while being resource-aware? -._Mbﬁ
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= how to best integrate these mechanisms
into popular deep learning frameworks
to allow wider-scale use?
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