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unsustainable growth of deep learning

2017

2023
~5 orders of magnitude 
increase in training cost.

~7 orders of magnitude growth 
in computational footprint.

https://aiindex.stanford.edu/report/


journey of data in deep learning training

3

CPU feeds the accelerators
• 16-64 cores per GPU (recommended)
• 96 cores per TPU*

*Audibert et al., “tf.data service: A Case for Disaggregating ML Input Data Processing.” ACM SoCC 2023

otherwise, accelerator may be underutilized
can we do more with fewer CPUs & less of the CPU?



• GPU-centric I/O path

• data & work sharing

• impact of data selection

deep learning with less hardware
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Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pınar Tözün.
DaMoN 2025

https://arxiv.org/abs/2409.18749


target hardware setup

5

CPU
memory

GPUPCIe

server

CPU

* PCIe is dropped in the remaining figures for the sake of simplicity in illustrations.

GPU
memory



conventional: CPU-centric I/O
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 ecosystem support
× CPU-bound & overhead from memory copy



GDS: GPU-centric & CPU-initiated
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 eliminates the extra memory copy
× still CPU-bound

GPUDirect
[NVIDIA’19]



BaM: GPU-centric & GPU-initiated
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Memory
[ASPLOS’23]

 eliminates the CPU on the path
× ecosystem missing & saturates GPU



evaluation: CPU- vs GPU-centric I/O
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workload: random reads
 each mechanism has their own tool for benchmarking

memory
= 128GB

PCIe
AMD
EPYC

7402P

memory
= 16GB

NVIDIA
TESLA
V100

24 cores
>160K 
threads

4 × 1TB Samsung 980 PRO    
       128 queue pairs

Gen3
x16

Gen4 x4

hardware

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM



bandwidth utilization – 4 SSDs & PCIe 
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GDS is CPU-compute heavy.
 16 logical cores utilized

BaM is limited by the
PCIe Gen3 link & heavy on 
the GPU resources.
 whole GPU utilized

SPDK is the most resource-
efficient but has a longer 
path to the GPU.
 2 logical cores utilized
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• need to reduce the dependency on CPUs
for more efficient deep learning pipelines

• GPU-centric I/O is a way to do that
& we have the mechanisms today (e.g., GDS, BaM)
o GDS has dependency on CPUs still
o BaM requires a lot of GPU resources

when to use which mechanism while being resource-aware?
how to best integrate them into popular deep learning 

frameworks (or GPU databases) for wider-scale use?

path to GPU-centric I/O

11



• GPU-centric I/O path

• data & work sharing

• impact of data selection

deep learning with less hardware
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TensorSocket: Shared Data Loading for Deep Learning Training
Ties Robroek, Neil Kim Nielsen, Pınar Tözün.
SIGMOD 2026

https://arxiv.org/abs/2409.18749


conventional journey of data while training
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data journey in collocated training

14redundant work & CPU use!



data sharing for collocated training
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minimize the redundancy!

TensorSocket



TensorSocket requirements & limitations
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 consumers go through the data at the same rate
doesn’t mean that consumers …
• cannot join at different epochs of training
• train at differing speeds
• have different batch sizes

 target is smaller scale
• collocation of model training on a single server
• models can fit into the memory of a single GPU 
not everyone needs “big” models & scale!
for larger scales, check out tf.data service, CoorDL …

[SoCC’23] [PVLDB’21]

• Varoquaux et al. Hype, Sustainability, and the 
Price of the Bigger-is-Better Paradigm in AI

• Margot Seltzer, SIGMOD’25 keynote 

https://arxiv.org/abs/2409.14160
https://arxiv.org/abs/2409.14160


impact of data sharing

17higher overall throughput & reduced CPU need!
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• on PyTorch
• a server with 4 A100 (40GB) GPUs
• one model training on each



comparison to other techniques
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TensorSocket sustains throughput even with GPU collocation
& reduces both CPU and GPU needs for the whole workload
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No Sharing Joader TensorSocket • server with a single H100 GPU (80GB)
• CPU resources are the same for all[NeurIPS’22]



sharing for deep learning training

• workload collocation allows data & work sharing

• TensorSocket enables data & work sharing for 
collocated training jobs on the same dataset 

can reduce both the CPU & GPU needs of training
while increasing training throughput

19



• GPU-centric I/O path

• data & work sharing

• impact of data selection

deep learning with less hardware 
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Collaboration started at 2024 Dagstuhl seminar: Resource-Efficient Machine Learning.
Ties Robroek, Maximilian Böther, Niklas Christiansen, Daniel Sepehri, Dagmar 
Kainmüller, Theo Rekatsinas, Stefanie Scherzinger, Ana Klimovic, Pınar Tözün.

https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311


why data selection?

• reduce the dataset size 

• increase model accuracy

• fine-tuning  

21

unclear impact on the end-to-end training time!
trade-off: computational complexity

vs “better” data selection



preliminary results
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duration
(mins)

GPU energy use
(Wh)

accuracy gain
over base model

LESS (25%)
Full
Random (50%)
Random (25%)

base model = Llama-3.2-1B-Instruct
dataset = TruthfulQA

[ICML’24]

server with a single H100 GPU (80GB) 



preliminary results
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duration
(mins)

GPU energy use
(Wh)

accuracy gain
over base model

LESS (25%) 318 1099 80%
Full 84 417 84%
Random (50%) 43 215 63%
Random (25%) 23 118 39%

if the data selection can be used across different fine-
tuning processes, the costs may amortize

base model = Llama-3.2-1B-Instruct
dataset = TruthfulQA

[ICML’24]

server with a single H100 GPU (80GB) 



radT

• backend extends mlflow
• incorporates collocation
• allows easy, extensible, and scalable

hardware monitoring
(dcgm, nvidia-smi, top, iostat, carbontracker,
nsight systems/compute, pytorch profiler …)

frontend for data exploration

used by our group & data scientists @ITU for systematic 
benchmarking of deep learning training 24

[DEEM’23]



• GPU-centric I/O path

• data & work sharing

• impact of data selection

deep learning with less hardware
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TensorSocket: Shared Data Loading for Deep Learning Training
Ties Robroek, Neil Kim Nielsen, Pınar Tözün.
SIGMOD 2026

Path to GPU-Initiated I/O for Data-Intensive Systems
Karl B. Torp, Simon Lund, Pınar Tözün.
DaMoN 2025

Collaboration started at 2024 Dagstuhl seminar: Resource-Efficient Machine Learning.
Ties Robroek, Maximilian Böther, Niklas Christiansen, Daniel Sepehri, Dagmar 
Kainmüller, Theo Rekatsinas, Stefanie Scherzinger, Ana Klimovic, Pınar Tözün.

thank you!

https://arxiv.org/abs/2409.18749
https://arxiv.org/abs/2409.18749
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/24311
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