

<u>dasya.itu.dk</u>

www.itu.dk

novo nordisk

foundation

satisfying the data monster with fewer resources a quest to feed the GPU in deep learning training

Pınar Tözün

Associate Professor IT University of Copenhagen

DEEM 27/06/2025 <u>pito@itu.dk</u> pinartozun.com

Training compute (petaFLOP - log scale)

journey of data in deep learning training

CPU feeds the accelerators

- 16-64 cores per GPU (recommended)
- 96 cores per TPU*

• otherwise, accelerator may be underutilized • can we do more with fewer CPUs & less of the CPU?

*Audibert et al., "tf.data service: A Case for Disaggregating ML Input Data Processing." ACM SoCC 2023

deep learning with less hardware

Path to GPU-Initiated I/O for Data-Intensive Systems

Karl B. Torp, Simon Lund, Pınar Tözün.

• GPU-centric I/O path DaMon 2025

data & work sharing

impact of data selection

target hardware setup

* PCIe is dropped in the remaining figures for the sake of simplicity in illustrations.

conventional: CPU-centric I/O

- ✓ ecosystem support
- × CPU-bound & overhead from memory copy

GDS: GPU-centric & CPU-initiated

GPUDirect [NVIDIA'19]

- eliminates the extra memory copy
- × still CPU-bound

BaM: GPU-centric & GPU-initiated

- eliminates the CPU on the path
- × ecosystem missing & saturates GPU

JNIVERSITY OF COPENHAGEN

evaluation: CPU- vs GPU-centric I/O

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM

workload: random reads

 \rightarrow each mechanism has their own tool for benchmarking

bandwidth utilization – 4 SSDs & PCIe

path to GPU-centric I/O

- need to reduce the dependency on CPUs for more efficient deep learning pipelines
- GPU-centric I/O is a way to do that
 & we have the mechanisms today (e.g., GDS, BaM)
 - GDS has dependency on CPUs still
 - BaM requires a lot of GPU resources

when to use which mechanism while being resource-aware?
 how to best integrate them into popular deep learning frameworks (or GPU databases) for wider-scale use?

deep learning with less hardware

• GPU-centric I/O path

data & work sharing

TensorSocket: Shared Data Loading for Deep Learning Training Ties Robroek, Neil Kim Nielsen, Pınar Tözün. SIGMOD 2026

impact of data selection

conventional journey of data while training

data journey in collocated training

redundant work & CPU use!

ERSITY OF COPENHAGEN

data sharing for collocated training TensorSocket

minimize the redundancy!

TensorSocket requirements & limitations

Consumers go through the data at the same rate

doesn't mean that consumers ...

- cannot join at different epochs of training
- train at differing speeds
- have different batch sizes

→ target is smaller scale

- Varoquaux et al. <u>Hype, Sustainability, and the</u> <u>Price of the Bigger-is-Better Paradigm in Al</u>
- Margot Seltzer, SIGMOD'25 keynote
- collocation of model training on a single server
- models can fit into the memory of a single GPU not everyone needs "big" models & scale!
 for larger scales, check out *tf.data service, CoorDL* ... [SoCC'23] [PVLDB'21]

impact of data sharing

■ No Sharing □ TensorSocket training throughput (samples/s) one model training on each 4000 5000 utilization 4000 3000 per model 3000 2000 CPU 2000 1000 1000 0 0 Reenett 2 Reenett A NobileNet S NobileNet L Reenett 2 Reenett A nobileNet S nobileNet models models higher overall throughput & reduced CPU need!

UNIVERSITY OF COPENHAGEN

a server with 4 A100 (40GB) GPUs

on PyTorch

comparison to other techniques

TensorSocket sustains throughput even with GPU collocation & reduces both CPU and GPU needs for the whole workload 18

sharing for deep learning training

workload collocation allows data & work sharing

 TensorSocket enables data & work sharing for collocated training jobs on the same dataset

can reduce both the CPU & GPU needs of training while increasing training throughput

deep learning with less hardware

• GPU-centric I/O path

data & work sharing

impact of data selection

Collaboration started at 2024 Dagstuhl seminar: <u>Resource-Efficient Machine Learning</u>. Ties Robroek, Maximilian Böther, *Niklas Christiansen, Daniel Sepehri*, Dagmar Kainmüller, Theo Rekatsinas, Stefanie Scherzinger, Ana Klimovic, Pınar Tözün.

why data selection?

reduce the dataset size

increase model accuracy

• fine-tuning

unclear impact on the end-to-end training time!
 trade-off: computational complexity
 vs "better" data selection

preliminary results

base model = Llama-3.2-1B-Instruct dataset = TruthfulQA server with a single H100 GPU (80GB)

	duration (mins)	GPU energy use (Wh)	accuracy gain over base model
LESS (25%) ^[ICML'24]			
Full			
Random (50%)			
Random (25%)			

preliminary results

base model = Llama-3.2-1B-Instruct dataset = TruthfulQA server with a single H100 GPU (80GB)

	duration (mins)	GPU energy use (Wh)	accuracy gain over base model
LESS (25%) ^[ICML'24]	318	1099	80%
Full	84	417	84%
Random (50%)	43	215	63%
Random (25%)	23	118	39%

if the data selection can be used across different finetuning processes, the costs may amortize

- backend extends mlflow
- incorporates collocation
- allows easy, extensible, and scalable hardware monitoring (dcgm, nvidia-smi, top, iostat, carbontracker, nsight systems/compute, pytorch profiler ...)

React nede frontend for data exploration

HIGHCHART

used by our group & data scientists @ITU for systematic benchmarking of deep learning training

deep learning with less hardware

Path to GPU-Initiated I/O for Data-Intensive Systems

Karl B. Torp, Simon Lund, Pinar Tözün.

- GPU-centric I/O path **DaMoN 2025**

data & work sharing

TensorSocket: Shared Data Loading for Deep Learning Training Ties Robroek, Neil Kim Nielsen, Pınar Tözün. **SIGMOD 2026**

impact of data selection

Collaboration started at 2024 Dagstuhl seminar: <u>Resource-Efficient Machine Learning</u>. Ties Robroek, Maximilian Böther, Niklas Christiansen, Daniel Sepehri, Dagmar Kainmüller, Theo Rekatsinas, Stefanie Scherzinger, Ana Klimovic, Pinar Tözün.

thank you!