Path to GPU-Initiated I/O for
Data-Intensive Systems

SAMSUNG

RAD

Karl B. Torp, Samsung
Simon A. F. Lund, Samsung
Pinar Tozun, IT University of Copenhagen



Why GPU-initiated Storage?

Training data of notable LLMs https://epoch.ai/data-insights/dataset-size-trend Z EPOCHAI
NVI D IA G P U M e m o ry Yea r Training dataset size (tokens)
= 3.7xlyear R
V100 16/32GB | 2017
A100 40 /80 GB 2020 "
H100 80 GB 2022 o
H200 141 GB 2024

e \We need to identify:
o What are the key technologies in the field of GPU-initiated Storage?

o How does performance of GPU-initiated Storage compare to CPU-centric

Storage?



The Conventional Approach
e CPU-initiated

o CPU loads data to CPU memory
CPU —1
o Copy data to GPU memory
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e Typically POSIX

e Ecosystem support, but CPU-bound and high overhead from

memory copy



GPUfs (2014) & ActivePointers (2016/2018)

e Provide a POSIX-like API for GPUs

GPU-initiated
o CPU does the work

Improve GPU programmability at the price of slightly worse

performance
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GDS: NVIDIA GPUDirect Storage (2019)

e Allows data transfer directly between storage and GPU memory

e CPU-initiated

o Doesn’t use CPU Mem
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e Faster than the conventional approach, performance is CPU-bound



BaM: Big Accelerator Memory (2023)

e Completely bypass the CPU when accessing storage

e GPU-initiated NEW
CPU —1—~<] GPU
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o CPU is only used for setup

e Fast storage access at the cost of saturating the GPU



GMT: GPU Orchestrated Memory Tiering (2024)
e Access storage through a 3-tier cache: GPU, CPU, Storage

e GPU-initiated
o CPU is used for transfer to and

from CPU memory
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e Fast storage access, if reuse percentage is high, at the cost of

spending both GPU and CPU resources



Recap

Focus Initiation

Technology
Programmability Performance GPU | CPU

GPUfs X X
ActivePointers X X
GDS X X
Bam  °°™ X X
GMT X X




GPU- vs CPU-centric Storage

e SPDK represents the state-of-the-art in CPU-centric storage

e How does the bandwidth of BaM compare to GDS and SPDK?

e How does BaM scale across multiple SSDs compared to SPDK?

e How is the resource consumption of BaM compared to SPDK?



GPU- vs CPU-centric Storage: System
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System | Gigabyte G292-Z20

CPU AMD EPYC 7402P 24-Core Processor

DRAM 8 X 32GB SK Hynix DDR4 2400MHz

GPUs 2 X NVIDIA Tesla V100-16GB PCle
Gen 3

SSDs 4 X 1TB Samsung 980 PRO w/
Heatsink

OS Ubuntu 20.04 LTS (Linux 5.8)

NVIDIA | Driver 550, CUDA 12.6

BaM GitHub ‘master’ branch

GDS Matching CUDA (12.6)

SPDK v24.09
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GPU- vs CPU-centric Storage: Workload

e Random Read

o BaM: ‘nvm-block-bench’

m 1thread and 1 I/O per page in cache = 8.59 GB / page size
o GDS: ‘gdsio’

m 16 CPU threads
o SPDK: ‘bdevperf’

m 1 Pair of thread siblings

o 5 repetitions, mean and stddev
o GPU PCle traffic measured by NVIDIA ‘dcgmi’
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Bandwidth of BaM vs GDS vs SPDK

° is comparable to SPDK, but e GDS can’t keep up
capped by GPU PCle Gen 3
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s BaM scaling linearly?

e GPU memory is limiting cache size Resource consumption

° fully saturates the GPU
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Discussion

e What is needed to bring GPU-initiated 10 to real-world applications?

o Integration into Al frameworks (e.g., Pytorch)

o CPU/GPU resource management

e What is the optimal abstraction?
o GPUTfs, ActivePointers, GDS: File abstraction  (CSV, JSON, JPEG etc.)

o BaM, GMT: Array abstraction (Blocks)
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s BaM affected by locality?

e Locality impact amortized at 8KiB
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GPU- vs CPU-centric Storage: Workload

e Random Read

o BaM: ‘nvm-block-bench’
m 11/O per page in cache = 8.59 GB / page size, e.g 2,097,152 pages of size 4K
m 128 gpairs of depth 1024 for each SSD
o GDS: ‘gdsio’
m  Running for 10 seconds
m 16 CPU threads and 10GB filesize
o SPDK: ‘bdevperf’
m  Running for 10 seconds

m 1 Pair of thread siblings, queue depth 256
e Metrics: IOPS and Bandwidth (GB/s)

o 5repetitions, mean and stddev reported

o GPU PCle traffic measured by ‘dcgmf’
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