Path to GPU-Initiated I/O for
Data-Intensive Systems

SAMSUNG

RAD

Karl B. Torp, Samsung
Simon A. F. Lund, Samsung
Pinar Tozun, IT University of Copenhagen

Why GPU-initiated Storage?

Training data of notable LLMs https://epoch.ai/data-insights/dataset-size-trend Z EPOCHAI
NVI D IA G P U M e m o ry Yea r Training dataset size (tokens)
= 3.7xlyear R
V100 16/32GB | 2017
A100 40 /80 GB 2020 "
H100 80 GB 2022 o
H200 141 GB 2024

e \We need to identify:
o What are the key technologies in the field of GPU-initiated Storage?

o How does performance of GPU-initiated Storage compare to CPU-centric

Storage?

The Conventional Approach
e CPU-initiated

o CPU loads data to CPU memory
CPU —1
o Copy data to GPU memory
/CPU Mem/L2 <{ GPU Mem >

P
J

e Typically POSIX

e Ecosystem support, but CPU-bound and high overhead from

memory copy

GPUfs (2014) & ActivePointers (2016/2018)

e Provide a POSIX-like API for GPUs

GPU-initiated
o CPU does the work

Improve GPU programmability at the price of slightly worse

performance

CPU

NEW

i
)

—2

/CPU Mem /-3

GPU

< GPU Mem >

A

4

GDS: NVIDIA GPUDirect Storage (2019)

e Allows data transfer directly between storage and GPU memory

e CPU-initiated

o Doesn’t use CPU Mem

CPU

:

/CPU Mem/

NEW
Storage|—2-><| GPU Mem >

e Faster than the conventional approach, performance is CPU-bound

BaM: Big Accelerator Memory (2023)

e Completely bypass the CPU when accessing storage

e GPU-initiated NEW
CPU —1—~<] GPU

Y
/CPU Mem/ Storage 2

o CPU is only used for setup

e Fast storage access at the cost of saturating the GPU

GMT: GPU Orchestrated Memory Tiering (2024)
e Access storage through a 3-tier cache: GPU, CPU, Storage

e GPU-initiated
o CPU is used for transfer to and

from CPU memory

CPU

CPU Mem/

Storage

GPU Mem

/

A

NEW

W

2

e Fast storage access, if reuse percentage is high, at the cost of

spending both GPU and CPU resources

Recap

Focus Initiation

Technology
Programmability Performance GPU | CPU

GPUfs X X
ActivePointers X X
GDS X X
Bam °°™ X X
GMT X X

GPU- vs CPU-centric Storage

e SPDK represents the state-of-the-art in CPU-centric storage

e How does the bandwidth of BaM compare to GDS and SPDK?

e How does BaM scale across multiple SSDs compared to SPDK?

e How is the resource consumption of BaM compared to SPDK?

GPU- vs CPU-centric Storage: System

/N

PCle Switch

PCle Brldge

R

N

< PCle Switch >

PCle Brldge

oot Complex /L

R

N

oot Complex /

PCle Brldge

CPU

/ Root Complex /

/ Root Comple)/

/N

PCle Switch >

System | Gigabyte G292-Z20

CPU AMD EPYC 7402P 24-Core Processor

DRAM 8 X 32GB SK Hynix DDR4 2400MHz

GPUs 2 X NVIDIA Tesla V100-16GB PCle
Gen 3

SSDs 4 X 1TB Samsung 980 PRO w/
Heatsink

OS Ubuntu 20.04 LTS (Linux 5.8)

NVIDIA | Driver 550, CUDA 12.6

BaM GitHub ‘master’ branch

GDS Matching CUDA (12.6)

SPDK v24.09

D)

Default

SSDO

PCle Brldge

< PCle SW|tch

Unused

GPU- vs CPU-centric Storage: Workload

e Random Read

o BaM: ‘nvm-block-bench’

m 1thread and 1 I/O per page in cache = 8.59 GB / page size
o GDS: ‘gdsio’

m 16 CPU threads
o SPDK: ‘bdevperf’

m 1 Pair of thread siblings

o 5 repetitions, mean and stddev
o GPU PCle traffic measured by NVIDIA ‘dcgmi’

11

Bandwidth of BaM vs GDS vs SPDK

° is comparable to SPDK, but e GDS can’t keep up
capped by GPU PCle Gen 3

H —4— GDS BaM PCle H —— GDS BaM PCle
1 drive ~$#- GDSPCle —4— SPDK 4 drives —$- GDSPCle —4— SPDK
BaM BaM
8{ PCleGendx4_________________________ 27.88 O —— 108.48] (211.37
30 A
Samsung 980 Pro \ 4 x Samsung 980 _Pro
T === ==t Repeated | ~~~- - - e
/ P,
acpess 25 -
6 -
o o
& 5 G 20 -
S S
5 4] «—_BaM and SPDK are 3 PCle Gen 3X16 _ /.
= the same 2 151
5 & %
= 81 — -~ & BaM limited by PCle Gen 3__#-——"g —
Dip is SSD specific 10 A 4
2 -
5 - GDS never reach
1+ PCle Gen 3
O T T T T T T T T T T O T T T T T T T T T T
4 8 16 32 64 128 256 512 1024 2048 4 8 16 32 64 128 256 512 1024 2048
I/O size (KiB) 1/O size (KiB) 1

s BaM scaling linearly?

e GPU memory is limiting cache size Resource consumption

° fully saturates the GPU
|/O Size 4K BaM 1 SSDs BaM 3 SSDs .)]
is Bl 5505 ol 4 5505 e SPDK requires a single physical
404 4xSamsung980Pro __________________________ core
3.5 1
B SPDK4SSDS ... ‘t/ 4 Drives: BaM fa”s Off
% N 42 TP
520/ ™~ 1-3 Drives: Linear scaling
s SRRKREETE. ool S e s e e el
1.5 A
1.01" sppk 1 5Ds
0.5
0.0

1 2 4 8 16 32 64 128 256 512 1024 2048
GPU Threads, Requests, and Pages in Cache (Ki)

Discussion

e What is needed to bring GPU-initiated 10 to real-world applications?

o Integration into Al frameworks (e.g., Pytorch)

o CPU/GPU resource management

e What is the optimal abstraction?
o GPUTfs, ActivePointers, GDS: File abstraction (CSV, JSON, JPEG etc.)

o BaM, GMT: Array abstraction (Blocks)
SANMSUNG
Karl B. Torp, k.torp@samsung.com
Simon A. F. Lund, simon.lund@samsung.com
Pinar Tozun, pito@itu.dk KA’D 14

mailto:k.torp@samsung.com
mailto:simon.lund@samsung.com
mailto:pito@itu.dk

s BaM affected by locality?

e Locality impact amortized at 8KiB

Locality (QD2) ¢— GPUO GPUL

AL S CR—

0.4 -

[V}
[a
© 0.35 |
]
1]
c
S
S 03

0.25 -

512 1024 2048 4096 8192 16384

1/0 size (B)

15

GPU- vs CPU-centric Storage: Workload

e Random Read

o BaM: ‘nvm-block-bench’
m 11/O per page in cache = 8.59 GB / page size, e.g 2,097,152 pages of size 4K
m 128 gpairs of depth 1024 for each SSD
o GDS: ‘gdsio’
m Running for 10 seconds
m 16 CPU threads and 10GB filesize
o SPDK: ‘bdevperf’
m Running for 10 seconds

m 1 Pair of thread siblings, queue depth 256
e Metrics: IOPS and Bandwidth (GB/s)

o 5repetitions, mean and stddev reported

o GPU PCle traffic measured by ‘dcgmf’

16

