January 20, 2026 CIDR 2026

Flexible 1/O for Database
Management Systems with xNVMe

Emil Houlborg Simon A. F. Lund
Andreas N. Tietgen Javier Gonzalez
Pinar Tozln Vivek Shah

IT UNI\/ERSITY OF COPENHAGEN (.) ﬂ

SI\I\IISUNG

Marcel Weisgut
Tilmann Rabl

once upon a time ...

O licati
g xLA‘ application |
o ‘@
5 &

5ﬁlesystem]
o ;
S block layer |
g 9

disk driver]

S [@ HDD]
o
©

traditional 1/O path was designed for hard disks

T LA appligf;\tiopAA
= x|le W[3 spdk
A oS = S .
5 a2 S & |dr|ver
"""" S 0 B o 1 N
filesystem |~ o
Ia [~
= b block layer |
v L
NVMe driver ~]
S [@ SSD V]
>
Q
O

application

I I

| kv libs | | zns libs | (fdp libs |

NVMe driver]

| KV SSD | ZNS sSD | FDP SSD |

data systems tend to avoid dealing with the landscape
target = “generic” SSDs & synchronous POSIX /O

a way to approach the landscape € an/azs. E——
N

CORE API e C AP

) Comma“d(s . C++ can directly use

S l S * bindings for rust & python
S _ S * selection of an I/0O path ...

2 Queue W= * done by libxnvme based

Storage Device or File on available paths
* or specified by the user

|) ¢ ‘
Object Model
1/O Interface Independence with xNVMe
Simon A. F. Lund Philippe Bonnet
Thread Pools : :
POSIX aio — _ Samsung IT University of Copenhagen
Copenhagen, Denmark Copenhagen, Denmark
simon.lund@samsung.com phbo@itu.dk
SPDK Driver Y
io_uring river .
Klaus B. A. Jensen SYSTOR'22 Javier Gonzalez
\ / Samsung Samsung
> “o—wn I 1 tati Copenhagen, Denmark Copenhagen, Denmark
R = e iaron k.jensen@samsung.com javier.gonz@samsung.com
_ : p

https://xnvme.io/

a way to approach the landscape ?NVME e 1o
, ‘ N

. application

(-)

- ¥ libxnvme) application

£ sl F] ———

o 9|2 = z M L libxnvme

_ [flesysem)® B

é @block Iayerv] = | kv libs | [zns libs | {fdp libs]
NVMe driver ~] [NVMe driver]

g[@ssn """"""" Y (kvssD J(zNsssD)(FoPssp) |

3

ge

can XNVMe give database systems more 1/0O flexibility?

5

https://xnvme.io/

C NVMe integration into DUCKDB
N2

CREATE PERSISTENT SECRET nvmets
fs (
‘ File System ‘ TYPE NVMEFS,
K nvme _device path '/dev/nglnl’,
WOrks on backend "io uring cmd’
Local File blocks,)
System not files!
default & GZip File NVMe File System ATTACH DATABASE ‘nvmefs://example.db
posix-based System nvme fs AS nvme (READ WRITE);

X can get better performance if integrated into DuckDB core
e.g., file system calls are still sync even if nvmefs issues async 1/0

=» our goal is accessible 1/0 diversity first!

no impact on DuckDB core & minimal impact on usage!

LBA management in nvmefs

<€ logical block address (LBA) range >

o database.db |database.db.wal duckdb_temp_storage_*.tmp

struct GlobalMetadata { " file block
uint64_t db_path_size; emporary Tiie bIocKS

char db_path[101];

Temporary File Metadata Manager

uint64_t db_start; temp file 1
uint64_t wal_start; :
uint64_t tmp_start; tempfile2— .../ || 0 LBA 0-63

m/» 1| LBA 448-511
uint64_t db_location;

2 | LBA64-127

uint64_t wal_location;

FDP (flexible data placement) SSD support

reclaim unit handle O

reclaim unit handle 1

reclaim unit handle n

reclaim unit

.l reclaim unit m

|| reclaim units '
erase granularity

Towards Efficient Flash Caches with Emerging NVMe
Flexible Data Placement SSDs

Michael Allison, Arun George, Javier Gonzalez, Dan Helmick, Vikash Kumar, Roshan R Nair,

Vivek Shah® ’
Samslu‘;eg Elec?ronics Eurosys 25

nvmefs gives access to FDP SSD
commands via xXNVMe

preliminary FDP use:

 database data is long-lived

 temporary file blocks are
short-lived (per query)

e different reclaim unit handles
for database & temporary data

=>» separates their
garbage collection

evaluation

* baseline
DuckDB LocalFileSystem — posix

* DuckDB nvmefs
xnvme — |/O passhthru
xnvme — 1/O passhthru — FDP
xnvme — spdk

on
e TPC-H
* aggregation benchmark

@ Samsung Memory Research Center

CPU (2X) — Intel® Xeon® Gold 6342

Robust External Hash Aggregation
in the Solid State Age |cDE’24

Laurens Kuiper Peter Boncz Hannes Miihleisen
CWI, Amsterdam, Netherlands CWI, Amsterdam, Netherlands CWI, Amsterdam, Netherlands
laurens.kuiper @cwi.nl peter.boncz@cwi.nl hannes.muehleisen@cwi.nl

RAM 500 GB
cores (threads) 24 (48)

clock rate (turbo) 2.8 (3.5) GHz
L1 (D/I) per core 48 / 32 KiB

L2 per core 1.3 MiB
L3 shared 36 MiB
0OS CentQOS Stream 9
kernel (linux) 6.13.0
FDP SSD
capacity 3.76 TB

block size 4 KiB

nvmefs in action posix /0 Passthru

O baseline Exnvme MW xnvme-fdp buffer pool
6 I tpc-h 100 (26GB) i - 20GB
~30%
#threads
=16

2 ~50%
Dol T 0 s e O oo oo oo TN o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

O L NWPWUL

16 | tpc-h 1000 (265GB)

) 0
oo

most ~ +/-1%

T . OO0 om0

I
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
tpc-h query #

1/O Passthru & FDP benefit I/O-intensive queries
sequential access (write amplification = 1) .

N
oo

execution time (sec) execution time (sec
.
N D
oo

spdk with nvmefs

aggregation benchmark — wide queries scaling
factor
4 [baseline - posix . =32
U —
3 xnvme - 1/0 passthru (5.3GB)
300

GEJ xnvme-spdk _ buffer pool
= . I I = 2GB
-
S 200 - : .
5 #threads
o _
Q 3 M =1
5 100

query #

/0 Passthru & SPDK benefit I/O-intensive queries
SPDK support without hurdles, but could be optimized

conclusion thank you!

e diversity of the SSD software & hardware landscape is underutilized
* XNVMe gives a unified access to this landscape

* nvmefs integrates xXNVMe into DuckDB

=>»support for io-uring, 1/0 Passthru, SPDK, flexible data placement ...

* steps ahead nvmefs O

* further & detailed performance analysis
e improved default SPDK setup
* better xNVMe buffer management
* more data systems integrated with xXNVMe El
* write- & random-access heavy workloads F-

let’s make modern SSD landscape more accessible!

12

backup

nvmefs in action

25

N
o

execution time (sec)
= =
o U

92

o

aggregation benchmark

. T thin — 80
O baseline ; O
s Q
. L

I xnvme g SE) 60
e
S

‘= 40
>
] (®)
Q
_ = B m a<)

20

1 6 7 8 9 10 11 12 13 1

#threads = 16
buffer pool = 20GB
scaling factor = 128 (22GB)

; wide

uery #

2 3 4 5 6 7 8 9 1011 12 13
query #

nvmefs helps wide variant (up to 20%)

less 1/0O-intensive thin variant doesn’t benefit

14

	Slide Number 1
	once upon a time …
	today – (non-exhaustive) SSD landscape
	a way to approach the landscape
	a way to approach the landscape
	 integration into
	LBA management in nvmefs
	FDP (flexible data placement) SSD support
	evaluation
	nvmefs in action
	spdk with nvmefs
	conclusion
	backup
	nvmefs in action

