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once upon a time ...
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traditional 1/O path was designed for hard disks
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data systems tend to avoid dealing with the landscape
target = “generic” SSDs & synchronous POSIX /O




a way to approach the landscape € an/azs. E——
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https://xnvme.io/
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can XNVMe give database systems more 1/0O flexibility?
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https://xnvme.io/

C NVMe integration into DUCKDB
N2

CREATE PERSISTENT SECRET nvmets
fs (
‘ File System ‘ TYPE NVMEFS,
K nvme _device path '/dev/nglnl’,
WOrks on backend "io uring cmd’
Local File blocks, )
System not files!
default & GZip File NVMe File System ATTACH DATABASE ‘nvmefs://example.db
posix-based System nvme fs AS nvme (READ WRITE);

X can get better performance if integrated into DuckDB core
e.g., file system calls are still sync even if nvmefs issues async 1/0

=» our goal is accessible 1/0 diversity first!

no impact on DuckDB core & minimal impact on usage!



LBA management in nvmefs

<€ logical block address (LBA) range >

o database.db  |database.db.wal duckdb_temp_storage_*.tmp

struct GlobalMetadata { " file block
uint64_t db_path_size; emporary Tiie bIocKS

char db_path[101];

Temporary File Metadata Manager

uint64_t db_start; temp file 1
uint64_t wal_start; :
uint64_t tmp_start; tempfile2— .../ || 0 LBA 0-63

m/» 1| LBA 448-511
uint64_t db_location;

2 | LBA64-127

uint64_t wal_location;




FDP (flexible data placement) SSD support

reclaim unit handle O
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Towards Efficient Flash Caches with Emerging NVMe
Flexible Data Placement SSDs

Michael Allison, Arun George, Javier Gonzalez, Dan Helmick, Vikash Kumar, Roshan R Nair,

Vivek Shah® ’
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nvmefs gives access to FDP SSD
commands via xXNVMe

preliminary FDP use:

 database data is long-lived

 temporary file blocks are
short-lived (per query)

e different reclaim unit handles
for database & temporary data

=>» separates their
garbage collection




evaluation

* baseline
DuckDB LocalFileSystem — posix

* DuckDB nvmefs
xnvme — |/O passhthru
xnvme — 1/O passhthru — FDP
xnvme — spdk

on
e TPC-H
* aggregation benchmark

@ Samsung Memory Research Center

CPU (2X) — Intel® Xeon® Gold 6342

Robust External Hash Aggregation
in the Solid State Age |cDE’24
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RAM 500 GB
cores (threads) 24 (48)

clock rate (turbo) 2.8 (3.5) GHz
L1 (D/I) per core 48 / 32 KiB

L2 per core 1.3 MiB
L3 shared 36 MiB
0OS CentQOS Stream 9
kernel (linux) 6.13.0
FDP SSD
capacity 3.76 TB

block size 4 KiB




nvmefs in action posix /0 Passthru

O baseline Exnvme MW xnvme-fdp buffer pool
6 I tpc-h 100 (26GB) i - 20GB
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1/O Passthru & FDP benefit I/O-intensive queries
sequential access (write amplification = 1) .
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spdk with nvmefs

aggregation benchmark — wide queries scaling
factor
4 [ baseline - posix . =32
U —
3 xnvme - 1/0 passthru (5.3GB)
300

GEJ xnvme-spdk _ buffer pool
= . I I = 2GB
-
S 200 - : .
5 #threads
o _
Q 3 M =1
5 100

query #

/0 Passthru & SPDK benefit I/O-intensive queries
SPDK support without hurdles, but could be optimized



conclusion thank you!

e diversity of the SSD software & hardware landscape is underutilized
* XNVMe gives a unified access to this landscape

* nvmefs integrates xXNVMe into DuckDB

=>»support for io-uring, 1/0 Passthru, SPDK, flexible data placement ...

* steps ahead nvmefs O

* further & detailed performance analysis
e improved default SPDK setup
* better xNVMe buffer management
* more data systems integrated with xXNVMe El
* write- & random-access heavy workloads F-

let’s make modern SSD landscape more accessible!
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nvmefs in action
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1 6 7 8 9 10 11 12 13 1

#threads = 16
buffer pool = 20GB
scaling factor = 128 (22GB)

; wide

uery #

2 3 4 5 6 7 8 9 1011 12 13
query #

nvmefs helps wide variant (up to 20%)

less 1/0O-intensive thin variant doesn’t benefit
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