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once upon a time …
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today – (non-exhaustive) SSD landscape
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data systems tend to avoid dealing with the landscape
target  “generic” SSDs & synchronous POSIX I/O
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a way to approach the landscape  
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xnvme.io

• C API
• C++ can directly use
• bindings for rust & python

• selection of an I/O path …
• done by libxnvme based 

on available paths
• or specified by the user

SYSTOR’22

https://xnvme.io/


a way to approach the landscape  

5

xnvme.io
us

er
la

nd
ke

rn
el

de
vi

ce

spdk

application

filesystem

NVMe driver

SSD

block layer

driver

i/
o

pa
ss

th
ru

io
_u

rin
g

po
si

x
lib

ai
o

libxnvme

NVMe driver

ZNS SSDKV SSD FDP SSD

kv libs zns libs fdp libs

application

libxnvme

can xNVMe give database systems more I/O flexibility?

https://xnvme.io/


integration into 
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no impact on DuckDB core & minimal impact on usage!

Local File 
System

GZip File 
System

NVMe File System
nvmefs

File System

. . . 

default & 
posix-based

× can get better performance if integrated into DuckDB core
e.g., file system calls are still sync even if nvmefs issues async I/O
 our goal is accessible I/O diversity first! 

works on 
blocks, 
not files!



LBA management in nvmefs
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temp file 1

temp file 2

temp file 3

Temporary File Metadata Manager
…

…
LBA 448-5111
LBA 64-1272

0 LBA 0-63

temporary file blocks

database.db database.db.wal duckdb_temp_storage_*.tmp

logical block address (LBA) range

persisted @LBA 0



FDP (flexible data placement) SSD support
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nvmefs gives access to FDP SSD 
commands via xNVMe

preliminary FDP use:
• database data is long-lived
• temporary file blocks are

short-lived (per query)
• different reclaim unit handles 

for database & temporary data

 separates their 
garbage collection

reclaim unit handle 0

reclaim unit handle 1

reclaim unit handle n

. . .

reclaim unitsreclaim unitsreclaim unit

reclaim unitsreclaim units

reclaim unitsreclaim unitsreclaim unitreclaim unit

EuroSys’25

erase granularity



evaluation
• baseline

DuckDB LocalFileSystem – posix
• DuckDB nvmefs

xnvme – I/O passhthru
xnvme – I/O passhthru – FDP 
xnvme – spdk

on
• TPC-H
• aggregation benchmark
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ICDE’24

CPU (2X) – Intel® Xeon® Gold 6342
RAM 500 GB
cores (threads) 24 (48)
clock rate (turbo) 2.8 (3.5) GHz
L1 (D/I) per core 48 / 32 KiB
L2 per core 1.3 MiB
L3 shared 36 MiB
OS CentOS Stream 9
kernel (linux) 6.13.0

FDP SSD
capacity 3.76 TB
block size 4 KiB

@ Samsung Memory Research Center



nvmefs in action

10

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ex
ec

ut
io

n 
tim

e 
(s

ec
) baseline xnvme xnvme-fdp

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21ex
ec

ut
io

n 
tim

e 
(s

ec
)

tpc-h query #

I/O Passthru & FDP benefit I/O-intensive queries
sequential access (write amplification = 1)

tpc-h 100 (26GB)

tpc-h 1000 (265GB)

posix I/O Passthru
buffer pool

= 20GB

#threads
= 16

~

~50%

~30%

~25%

most ~ +/-1%



0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13

ex
ec

ut
io

n 
tim

e 
(s

ec
)

query #

baseline
xnvme
xnvme-spdk

spdk with nvmefs
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I/O Passthru & SPDK benefit I/O-intensive queries
SPDK support without hurdles, but could be optimized

- posix
- I/O passthru

scaling
factor
= 32

(5.3GB)

buffer pool
= 2GB

#threads
= 1

aggregation benchmark – wide queries

50%

30%



• diversity of the SSD software & hardware landscape is underutilized
• xNVMe gives a unified access to this landscape
• nvmefs integrates xNVMe into DuckDB
support for io-uring, I/O Passthru, SPDK, flexible data placement …

• steps ahead 
• further & detailed performance analysis
• improved default SPDK setup

• better xNVMe buffer management
• more data systems integrated with xNVMe
• write- & random-access heavy workloads

nvmefs

conclusion
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thank you!

let’s make modern SSD landscape more accessible!



backup
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nvmefs in action
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nvmefs helps wide variant (up to 20%) 
less I/O-intensive thin variant doesn’t benefit

aggregation benchmark
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#threads = 16
buffer pool = 20GB
scaling factor = 128 (22GB)
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