
Flexible I/O for Database
Management Systems with xNVMe

Emil Houlborg
Andreas N. Tietgen

Pınar Tözün

January 20, 2026

Marcel Weisgut
Tilmann Rabl

Simon A. F. Lund
Javier González

Vivek Shah

RAD

CIDR 2026

once upon a time …

2

us
er

la
nd

ke
rn

el
de

vi
ce

application

filesystem

disk driver

HDD

block layer

po
si

x

traditional I/O path was designed for hard disks

today – (non-exhaustive) SSD landscape

3

data systems tend to avoid dealing with the landscape
target  “generic” SSDs & synchronous POSIX I/O

us
er

la
nd

ke
rn

el
de

vi
ce

spdk
application

filesystem

NVMe driver

SSD

block layer

driver

i/
o

pa
ss

th
ru

io
_u

rin
g

po
si

x
lib

ai
o

NVMe driver

ZNS SSDKV SSD FDP SSD

kv libs zns libs fdp libs

application

a way to approach the landscape

4

xnvme.io

• C API
• C++ can directly use
• bindings for rust & python

• selection of an I/O path …
• done by libxnvme based

on available paths
• or specified by the user

SYSTOR’22

https://xnvme.io/

a way to approach the landscape

5

xnvme.io
us

er
la

nd
ke

rn
el

de
vi

ce

spdk

application

filesystem

NVMe driver

SSD

block layer

driver

i/
o

pa
ss

th
ru

io
_u

rin
g

po
si

x
lib

ai
o

libxnvme

NVMe driver

ZNS SSDKV SSD FDP SSD

kv libs zns libs fdp libs

application

libxnvme

can xNVMe give database systems more I/O flexibility?

https://xnvme.io/

integration into

6

no impact on DuckDB core & minimal impact on usage!

Local File
System

GZip File
System

NVMe File System
nvmefs

File System

. . .

default &
posix-based

× can get better performance if integrated into DuckDB core
e.g., file system calls are still sync even if nvmefs issues async I/O
 our goal is accessible I/O diversity first!

works on
blocks,
not files!

LBA management in nvmefs

7

temp file 1

temp file 2

temp file 3

Temporary File Metadata Manager
…

…
LBA 448-5111
LBA 64-1272

0 LBA 0-63

temporary file blocks

database.db database.db.wal duckdb_temp_storage_*.tmp

logical block address (LBA) range

persisted @LBA 0

FDP (flexible data placement) SSD support

8

nvmefs gives access to FDP SSD
commands via xNVMe

preliminary FDP use:
• database data is long-lived
• temporary file blocks are

short-lived (per query)
• different reclaim unit handles

for database & temporary data

 separates their
garbage collection

reclaim unit handle 0

reclaim unit handle 1

reclaim unit handle n

. . .

reclaim unitsreclaim unitsreclaim unit

reclaim unitsreclaim units

reclaim unitsreclaim unitsreclaim unitreclaim unit

EuroSys’25

erase granularity

evaluation
• baseline

DuckDB LocalFileSystem – posix
• DuckDB nvmefs

xnvme – I/O passhthru
xnvme – I/O passhthru – FDP
xnvme – spdk

on
• TPC-H
• aggregation benchmark

9

ICDE’24

CPU (2X) – Intel® Xeon® Gold 6342
RAM 500 GB
cores (threads) 24 (48)
clock rate (turbo) 2.8 (3.5) GHz
L1 (D/I) per core 48 / 32 KiB
L2 per core 1.3 MiB
L3 shared 36 MiB
OS CentOS Stream 9
kernel (linux) 6.13.0

FDP SSD
capacity 3.76 TB
block size 4 KiB

@ Samsung Memory Research Center

nvmefs in action

10

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ex
ec

ut
io

n
tim

e
(s

ec
) baseline xnvme xnvme-fdp

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21ex
ec

ut
io

n
tim

e
(s

ec
)

tpc-h query #

I/O Passthru & FDP benefit I/O-intensive queries
sequential access (write amplification = 1)

tpc-h 100 (26GB)

tpc-h 1000 (265GB)

posix I/O Passthru
buffer pool

= 20GB

#threads
= 16

~

~50%

~30%

~25%

most ~ +/-1%

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13

ex
ec

ut
io

n
tim

e
(s

ec
)

query #

baseline
xnvme
xnvme-spdk

spdk with nvmefs

11

I/O Passthru & SPDK benefit I/O-intensive queries
SPDK support without hurdles, but could be optimized

- posix
- I/O passthru

scaling
factor
= 32

(5.3GB)

buffer pool
= 2GB

#threads
= 1

aggregation benchmark – wide queries

50%

30%

• diversity of the SSD software & hardware landscape is underutilized
• xNVMe gives a unified access to this landscape
• nvmefs integrates xNVMe into DuckDB
support for io-uring, I/O Passthru, SPDK, flexible data placement …

• steps ahead
• further & detailed performance analysis
• improved default SPDK setup

• better xNVMe buffer management
• more data systems integrated with xNVMe
• write- & random-access heavy workloads

nvmefs

conclusion

12

thank you!

let’s make modern SSD landscape more accessible!

backup

13

nvmefs in action

14

nvmefs helps wide variant (up to 20%)
less I/O-intensive thin variant doesn’t benefit

aggregation benchmark

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13

ex
ec

ut
io

n
tim

e
(s

ec
)

query #

baseline

xnvme

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13

ex
ec

ut
io

n
tim

e
(s

ec
)

query #

thin wide

#threads = 16
buffer pool = 20GB
scaling factor = 128 (22GB)

	Slide Number 1
	once upon a time …
	today – (non-exhaustive) SSD landscape
	a way to approach the landscape
	a way to approach the landscape
	 integration into
	LBA management in nvmefs
	FDP (flexible data placement) SSD support
	evaluation
	nvmefs in action
	spdk with nvmefs
	conclusion
	backup
	nvmefs in action

