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storage hierarchy – directly attached
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why SSD?
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 except for SSDs, each layer stayed almost 
stable the past 15 years in terms of latency

• improvements on SSD internals
• from SAS/SATA to PCIe
• linux IO improvements

e.g., multiqueue, io-uring
 improved price/capacity

 led to several SSD-optimized data systems
• RocksDB, BwTree, LeanStore, Umbra …

source: Haas et al., CIDR 2020

shift from pure in-memory-optimized
to SSD-optimized data systems!

https://kernel.dk/blk-mq.pdf
https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://umbra-db.com/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
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work done in
collaboration with

https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232


once upon a time …
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today – (non-exhaustive) SSD landscape
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data systems tend to avoid dealing with the landscape
target  “generic” SSDs & synchronous POSIX I/O
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a way to approach the landscape  
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xnvme.io

• C API
• C++ can directly use
• bindings for rust & python

• selection of an I/O path …
• done by libxnvme based 

on available paths
• or specified by the user

SYSTOR’22

https://xnvme.io/


a way to approach the landscape  
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can xNVMe give database systems more I/O flexibility?

https://xnvme.io/


integration into 
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no impact on DuckDB core & minimal impact on usage!

Local File 
System

GZip File 
System

NVMe File System
nvmefs

File System

. . . 

default & 
posix-based

× can get better performance if integrated into DuckDB core
e.g., file system calls are still sync even if nvmefs issues async I/O
 our goal is accessible I/O diversity first! 

works on 
blocks, 
not files!



LBA management in nvmefs
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temp file 1

temp file 2

temp file 3

Temporary File Metadata Manager
…

…
LBA 448-5111
LBA 64-1272

0 LBA 0-63

temporary file blocks

database.db database.db.wal duckdb_temp_storage_*.tmp

logical block address (LBA) range

persisted @LBA 0



FDP (flexible data placement) SSD support
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nvmefs gives access to FDP SSD 
commands via xNVMe

preliminary FDP use:
• database data is long-lived
• temporary file blocks are

short-lived (per query)
• different reclaim unit handles 

for database & temporary data

 separates their 
garbage collection

reclaim unit handle 0

reclaim unit handle 1

reclaim unit handle n

. . .

reclaim unitsreclaim unitsreclaim unit

reclaim unitsreclaim units

reclaim unitsreclaim unitsreclaim unitreclaim unit

EuroSys’25

erase granularity



evaluation
• baseline

DuckDB LocalFileSystem – posix
• DuckDB nvmefs

xnvme – I/O passhthru
xnvme – I/O passhthru – FDP 
xnvme – spdk

on
• TPC-H
• aggregation benchmark
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ICDE’24

CPU (2X) – Intel® Xeon® Gold 6342
RAM 500 GB
cores (threads) 24 (48)
clock rate (turbo) 2.8 (3.5) GHz
L1 (D/I) per core 48 / 32 KiB
L2 per core 1.3 MiB
L3 shared 36 MiB
OS CentOS Stream 9
kernel (linux) 6.13.0

FDP SSD
capacity 3.76 TB
block size 4 KiB

@ Samsung Memory Research Center



nvmefs in action
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I/O Passthru & SPDK benefit I/O-intensive queries
SPDK support without hurdles, but could be optimized

- posix
- I/O passthru

scaling
factor
= 32

(5.3GB)

buffer pool
= 2GB

#threads
= 1

aggregation benchmark – wide queries

50%

30%



• diversity of the SSD software & hardware landscape is underutilized
• xNVMe gives a unified access to this landscape
• nvmefs integrates xNVMe into DuckDB
support for io-uring, I/O Passthru, SPDK, flexible data placement …

• steps ahead 
• further & detailed performance analysis
• improved default SPDK setup

• better xNVMe buffer management
• more data systems integrated with xNVMe
• write- & random-access heavy workloads

nvmefs

flexible I/O for data systems

15
let’s make modern SSD landscape more accessible!



• Flexible I/O for Database Management Systems with xNVMe
E. Houlborg, A. N. Tietgen, S. A. F. Lund, M. Weisgut, T. Rabl, J. 
Gonzalez, V. Shah, P. Tözün
CIDR 2026

• Path to GPU-Initiated I/O for Data-Intensive Systems
K. B. Torp, S. A. F. Lund, P. Tözün
DaMoN 2025

navigating I/O options for data systems 

16

https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
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journey of data in deep learning training
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CPU feeds the GPU
• 16-64 CPU cores per GPU (recommended)
• 96 CPU cores per TPU*

*Audibert et al., “tf.data service: A Case for Disaggregating ML Input Data Processing.” ACM SoCC 2023

otherwise, GPU/TPU may be underutilized
can we do more with fewer CPUs & less of the CPU?

https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826


• data & work sharing
e.g., CoorDL [PVLDB’21], Joader [NeurIPS’22], tf.data service 
[SoCC’23], TensorSocket [SIGMOD’26]

• data pre-processing on the accelerator 
e.g., DALI [NVIDIA], FusionFlow [PVLDB’24]

• GPU-centric I/O path
• GPUDirect Storage (GDS)
• Big Accelerator Memory (BaM) 

reducing the CPU needs for deep learning

18

what are the trade-offs 
of different options?



target hardware setup
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conventional: CPU-centric
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 ecosystem support
× CPU-bound & overhead from memory copy



GDS: GPU-centric & CPU-initiated
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 eliminates the extra memory copy
× still CPU-bound

GPU Direct 
Storage

[NVIDIA’19]



BaM: GPU-centric & GPU-initiated

22

CPU
memory

GPU

server

CPU

GPU
memory

1

2

Big 
Accelerator

Memory
[ASPLOS’23]

 eliminates the CPU on the path
× ecosystem missing & saturates GPU



CPU- vs GPU-centric storage access
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workload: random reads
 each mechanism has their own tool for benchmarking

memory
= 128GB

PCIe
AMD
EPYC

7402P

memory
= 16GB

NVIDIA
TESLA
V100

24 cores
>160K 
threads

4 × 1TB Samsung 980 PRO    
       128 queue pairs

Gen3
x16

Gen4 x4

hardware

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM



bandwidth utilization – 4 SSDs & PCIe 
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GDS is CPU-compute heavy.
 16 logical cores utilized

BaM is limited by the
PCIe Gen3 link & heavy on 
the GPU resources.
 whole GPU utilized

CPU-centric SPDK is 
resource-efficient but has a 
longer path to the GPU.
 2 logical cores utilized
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• need to reduce the dependency on CPUs
for more efficient deep learning pipelines

• GPU-centric data path is a way to do that
& we have the mechanisms today (e.g., GDS, BaM)
o GDS has dependency on CPUs still
o BaM requires a lot of GPU resources

when to use each mechanism while being resource-aware?
how to best integrate them into popular deep learning 

frameworks or GPU databases for wider-scale use?

path to GPU-centric storage access

25
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thank you!

https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232


backup
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nvmefs in action
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nvmefs helps wide variant (up to 20%) 
less I/O-intensive thin variant doesn’t benefit

aggregation benchmark
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GMT: GPU-centric & CPU- & GPU-initiated

29

CPU
memory

GPU

server

CPU

GPU
memory

1

2

GPU 
Orchestrated 

Memory 
Tiering

[ASPLOS’24]

2

 hybrid approach, works well if data reuse is high
× extra CPU/GPU resources used



GPUfs & ActivePointers: GPU-centric & GPU-initiated I/O
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 improves programmability
× longer I/O path, slight performance impact



scalability
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 BaM requires a page 
allocation in GPU memory 
for each GPU thread.

More threads doing IO,
more GPU memory needed.

 The sub-scalar performance 
for 4 SSDs is due to being 
limited by GPU memory.
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bandwidth utilization – 1 SSD 
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locality
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System Gigabyte G292-Z20

CPU AMD EPYC 7402P 24-Core Processor

DRAM 8 X 32GB SK Hynix DDR4 2400MHz

GPUs 2 X NVIDIA Tesla V100-16GB PCIe Gen 3 

SSDs 4 X 1TB Samsung 980 PRO w/ Heatsink

OS Ubuntu 20.04 LTS (Linux 5.8)

NVIDIA Driver 550, CUDA 12.6

BaM GitHub ‘master’ branch

GDS Matching CUDA (12.6)

SPDK v24.09 default unused

evaluation: CPU- vs GPU-centric I/O

34
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