E\%’E% 4'&\‘ \%\A“\‘\ && E\\
DAY L

dasya.itu.dk rad.itu.dk www.itu.dk

toward flexible & accessible
1/0 options for data systems

Pinar Tozun

Associate Professor
IT University of Copenhagen

/nnovationsfonden

Oracle pito@itu.dk Nnovo nordisk
January 22, 2026 pinartozun.com foundation

http://www.itu.dk/
https://dasya.itu.dk/
https://rad.itu.dk/
mailto:pito@itu.dk
http://www.pinartozun.com/

storage hierarchy — directly attached

core .
registers Q '

Q

®

$a[2/d .,

—

(08

~~
i

@)

g .

]

o

< '

®

(@

Q)

(@]

-

o

SUQg9-~ 10

$3J242 00Z-00T-~

SwG.,

NVMe SSD (s

why SSD?

=>» except for SSDs, each layer stayed almost

stable the past 15 years in terms of latency source: Haas et al., CIDR 2020
* improvements on SSD internals o
* from SAS/SATA to PCle T | - -
* linux IO improvements §> -
e.g., multiqueue, io-uring 2
=» improved price/capacity] /

2000 2005 2010 2015 2020

=>» led to several SSD-optimized data systems
e RocksDB, BwTree, LeanStore, Umbra ...

shift from pure in-memory-optimized
to SSD-optimized data systems!

https://kernel.dk/blk-mq.pdf
https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://umbra-db.com/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf

navigating 1/O options for data systems

Flexible I/O for Database Management Systems with xNVMe

E. Houlborg, A. N. Tietgen, S. A. F. Lund, M. Weisgut, T. Rabl, J.
Gonzalez, V. Shah, P. Tozun
CIDR 2026

Path to GPU-Initiated I/O for Data-Intensive Systems

K. B. Torp, S. A. F. Lund, P. Tézlun

B P e
DaMoN 2025 ()
work done in)

collaboration with g
™

SAMSUN

https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232

once upon a time ...

O licati
g xLA‘ application |
o ‘@
5 &

5ﬁlesystem]
o ;
S block layer |
g 9

disk driver]

S [@ HDD]
o
©

traditional 1/O path was designed for hard disks

T LA appligf;\tiopAA
= x|le W[3 spdk
A oS = S .
5 a2 S & |dr|ver
"""" S 0 B o 1 N
filesystem |~ o
Ia [~
= b block layer |
v L
NVMe driver ~]
S [@ SSD V]
>
Q
O

application

I I

| kv libs | | zns libs | (fdp libs |

NVMe driver]

| KV SSD | ZNS sSD | FDP SSD |

data systems tend to avoid dealing with the landscape
target = “generic” SSDs & synchronous POSIX /O

a way to approach the landscape € an/azs. E——
N

CORE API e C AP

) Comma“d(s . C++ can directly use

S l S * bindings for rust & python
S _ S * selection of an I/O path ...

2 Queue W= * done by libxnvme based

Storage Device or File on available paths
* or specified by the user

|) ¢ ‘
Object Model
1/O Interface Independence with xNVMe
Simon A. F. Lund Philippe Bonnet
Thread Pools : :
POSIX aio — _ Samsung IT University of Copenhagen
Copenhagen, Denmark Copenhagen, Denmark
simon.lund@samsung.com phbo@itu.dk
SPDK Driver Y
io_uring river .
Klaus B. A. Jensen SYSTOR'22 Javier Gonzalez
\ / Samsung Samsung
> “o—wn I 1 tati Copenhagen, Denmark Copenhagen, Denmark
R = e iaron k.jensen@samsung.com javier.gonz@samsung.com
_ : .

https://xnvme.io/

a way to approach the landscape ?NVME e 1o
, ‘ N

. application

(-)

- ¥ libxnvme) application

£ sl F] ———

o 9|2 = z M L libxnvme

_ [flesysem)® B

é @block Iayerv] = | kv libs | [zns libs | {fdp libs]
NVMe driver ~] [NVMe driver]

g[@ssn """"""" Y (kvssD J(zNsssD)(FoPssp) |

3

ge

can XNVMe give database systems more 1/0O flexibility?

8

https://xnvme.io/

C NVMe integration into DUCKDB
N2

CREATE PERSISTENT SECRET nvmets
fs (
‘ File System ‘ TYPE NVMEFS,
K nvme _device path '/dev/nglnl’,
WOrks on backend "io uring cmd’
Local File blocks,)
System not files!
default & GZip File NVMe File System ATTACH DATABASE ‘nvmefs://example.db
posix-based System nvme fs AS nvme (READ WRITE);

X can get better performance if integrated into DuckDB core
e.g., file system calls are still sync even if nvmefs issues async 1/0O

=» our goal is accessible 1/0 diversity first!

no impact on DuckDB core & minimal impact on usage!

LBA management in nvmefs

<€ logical block address (LBA) range >

o database.db |database.db.wal duckdb_temp_storage_*.tmp

struct GlobalMetadata { " file block
uint64_t db_path_size; emporary Tiie bIocKS

char db_path[101];

Temporary File Metadata Manager

uint64_t db_start; temp file 1
uint64_t wal_start; :
uint64_t tmp_start; tempfile2— .../ || 0 LBA 0-63

m/» 1| LBA 448-511
uint64_t db_location;

2 | LBA64-127

uint64_t wal_location;

FDP (flexible data placement) SSD support

reclaim unit handle O

reclaim unit handle 1

reclaim unit handle n

reclaim unit

.l reclaim unit m

|| reclaim units '
erase granularity

Towards Efficient Flash Caches with Emerging NVMe
Flexible Data Placement SSDs

Michael Allison, Arun George, Javier Gonzalez, Dan Helmick, Vikash Kumar, Roshan R Nair,

Vivek Shah® ’
Samslu‘;eg Elec?ronics Eurosys 25

nvmefs gives access to FDP SSD
commands via xXNVMe

preliminary FDP use:

 database data is long-lived

 temporary file blocks are
short-lived (per query)

e different reclaim unit handles
for database & temporary data

=>» separates their
garbage collection

11

evaluation

* baseline
DuckDB LocalFileSystem — posix

* DuckDB nvmefs
xnvme — |/O passhthru
xnvme — 1/O passhthru — FDP
xnvme — spdk

on
e TPC-H
* aggregation benchmark

@ Samsung Memory Research Center

CPU (2X) — Intel® Xeon® Gold 6342

Robust External Hash Aggregation
in the Solid State Age |cDE’24

Laurens Kuiper Peter Boncz Hannes Miihleisen
CWI, Amsterdam, Netherlands CWI, Amsterdam, Netherlands CWI, Amsterdam, Netherlands
laurens.kuiper @cwi.nl peter.boncz@cwi.nl hannes.muehleisen@cwi.nl

RAM 500 GB
cores (threads) 24 (48)

clock rate (turbo) 2.8 (3.5) GHz
L1 (D/I) per core 48 / 32 KiB

L2 per core 1.3 MiB
L3 shared 36 MiB
0OS CentOS Stream 9
kernel (linux) 6.13.0
FDP SSD
capacity 3.76 TB

block size 4 KiB

nvmefs in action posix /0 Passthru

O baseline Exnvme MW xnvme-fdp buffer pool
6 I tpc-h 100 (26GB) i - 20GB
~30%
#threads
=16

2 ~50%
Dol T 0 s e O oo oo oo TN o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

O L NWPWUL

16 | tpc-h 1000 (265GB)

) 0
oo

most ~ +/-1%

T . OO0 om0

I
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
tpc-h query #

/O Passthru & FDP benefit I/O-intensive queries
sequential access (write amplification = 1) -

N
oo

execution time (sec) execution time (sec
==
N D
oo

spdk with nvmefs

aggregation benchmark — wide queries scaling
factor
4 [baseline - posix . =32
U —
3 xnvme - 1/0 passthru (5.3GB)
300

GEJ xnvme-spdk _ buffer pool
= . I I = 2GB
-
S 200 - : .
5 #threads
o _
Q 3 M =1
5 100

query #

/0 Passthru & SPDK benefit I/O-intensive queries
SPDK support without hurdles, but could be optimized _

flexible 1/0 for data systems

* diversity of the SSD software & hardware landscape is underutilized
* XNVMe gives a unified access to this landscape

* nvmefs integrates xXNVMe into DuckDB

=>»support for io-uring, 1/0 Passthru, SPDK, flexible data placement ...

* steps ahead nvmefs O

* further & detailed performance analysis
e improved default SPDK setup
* better xNVMe buffer management
* more data systems integrated with xXNVMe El
* write- & random-access heavy workloads F-

let’s make modern SSD landscape more accessible!

15

navigating 1/O options for data systems

* Flexible I/O for Database Management Systems with xNVMe
E. Houlborg, A. N. Tietgen, S. A. F. Lund, M. Weisgut, T. Rabl, J.
Gonzalez, V. Shah, P. Tozun
CIDR 2026

* Path to GPU-Initiated I/O for Data-Intensive Systems
K. B. Torp, S. A. F. Lund, P. Tézlun
DaMoN 2025

16

https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232

journey of data in deep learning training

CPU GPU
4 ™
C (5) Preprocessing ()
; ata E i Training
Storage Loader Decode | | Transform Process
\—// g V4 \ / \ /
CPU feeds the GPU

 16-64 CPU cores per GPU (recommended)
e 96 CPU cores per TPU*

=» otherwise, GPU/TPU may be underutilized
=» can we do more with fewer CPUs & less of the CPU?

*Audibert et al., “tf.data service: A Case for Disaggregating IVIL Input Data Processing.” ACM SoCC 2023 17

https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826

reducing the CPU needs for deep IearninF

e data & work sharing

e.g., CoorDL [PVLDB’21], Joader [NeurlPS’22], tf.data service
[SoCC’23], TensorSocket [SIGMOD’26]

e data pre-processing on the accelerator
e.g., DALI [NVIDIA], FusionFlow [PVLDB’24]

GPU-centric /O path
. GPUDirect Storage (GDS) what are the trade-offs

- Big Accelerator Memory (Bam)[Of different options?

18

target hardware setup

GPU | |[GPU

CPU server

CPU

GPU| | GPU

CPU GPU
memory memory

* PCle is dropped in the remaining figures for the sake of simplicity in illustrations.

conventional: CPU-centric

server

CPU GPU
memory @ memory

5

v’ ecosystem support
x CPU-bound & overhead from memory copy

GDS: GPU-centric & CPU-initiated

GPU Direct

Storage
[NVIDIA’19] SEerver

CPU |
memory (@ memory

v’ eliminates the extra memory copy
x still CPU-bound

BaM: GPU-centric & GPU-initiated

Big
Accelerator
Memory
[ASPLOS’23]

server

CPU
memory memory

v’ eliminates the CPU on the path
X ecosystem missing & saturates GPU

CPU- vs GPU-centric storage access

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM

workload: random reads
- each mechanism has their own tool for benchmarking

hardware

4 x 1TB Samsung 980 PRO
128 queue pairs

memory memory

=128GB = 16GB
o

Gen4 x4
NVIDIA
PCle TESLA
Gen3

V100
x16

24 cores

bandwidth utilization — 4 SSDs & PCle

—$— GDS
—#- GDS PCle

L BaM

Bandwidth (GiB/s)

30 A

25 -

20 -

15 -

10 A

=—5S5DS
PCle Gen 4 x16

—— SPDK

4 x Samsung 980 Pro

CPU —»GPU
PCle Gen 3 x16

BaM PCle

[108.19][211.15

3|2 6|4 1&8 2!I56
read size (KiB)

512 1024 2048

GDS is CPU-compute heavy.
=» 16 logical cores utilized

BaM is limited by the
PCle Gen3 link & heavy on

the GPU resources.
=» whole GPU utilized

CPU-centric SPDK is

resource-efficient but has a

longer path to the GPU.
=» 2 logical cores utilized

24

path to GPU-centric storage access

« need to reduce the dependency on CPUs
for more efficient deep learning pipelines

« GPU-centric data path is a way to do that
& we have the mechanisms today (e.g., GDS, BaM)

o GDS has dependency on CPUs still
o BaM requires a lot of GPU resources

= when to use each mechanism while being resource-aware?

= how to best integrate them into popular deep learning
frameworks or GPU databases for wider-scale use?

25

navigating 1/O options for data systems

* Flexible I/O for Database Management Systems with xNVMe
E. Houlborg, A. N. Tietgen, S. A. F. Lund, M. Weisgut, T. Rabl, J.
Gonzalez, V. Shah, P. Tozun
CIDR 2026

* Path to GPU-Initiated I/O for Data-Intensive Systems
K. B. Torp, S. A. F. Lund, P. Tézlun
DaMoN 2025

thank you!

26

https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232

backup

nvmefs in action

25

N
o

execution time (sec)
= =
o U

92

o

aggregation benchmark

. T thin — 80
O baseline ; O
s Q
. L

I xnvme g SE) 60
e
S

‘= 40
>
] (®)
Q
_ = B m a<)

20

1 6 7 8 9 10 11 12 13 1

#threads = 16
buffer pool = 20GB
scaling factor = 128 (22GB)

; wide

uery #

2 3 4 5 6 7 8 9 1011 12 13
query #

nvmefs helps wide variant (up to 20%)

less 1/0O-intensive thin variant doesn’t benefit

28

GMT: GPU-centric & CPU- & GPU-initiate § s

GPU
Orchestrated
Memory
Tiering
[ASPLOS 24]

server

CPU GPU
memory @ memory

v hybrid approach, works well if data reuse is high
x extra CPU/GPU resources used

GPUfs & ActivePointers: GPU-centric & GPU-initiated I/0O i

[ASPLOS’13] [ISCA’16]
server

CPU
GPU
memory memory

v improves programmability
x longer 1/0 path, slight performance impact

30

scalability

BaM 1 SSDs BaM 3 SSDs
BaM 2 SSDs BaM 4 SSDs
4.5
4.0 - 4 x Samsung 980 Pro _ _ _ _ o o o
3.5 1
(Vp)
% SPDK 4 SO
O 3.0
(T
© 259 SPDK3SSDS .l
-
O 20-
= SPDK 2SSDS s
= 15
1.07" sppk 1 s5Ds
0.5 -
0.0

1 2 4 8 16 32 128 256 512 1024 2048

GPU Threads (Ki)

=>» BaM requires a page
allocation in GPU memory
for each GPU thread.

=>» More threads doing 10,
more GPU memory needed.

=» The sub-scalar performance
for 4 SSDs is due to being
limited by GPU memory.

31

bandwidth utilization — 1 SSD

—— GDS BaM PCle
—$ - GDS PCle —&— SPDK

BaM
84 PCle Gen 4 x4 27.84| [55.0]

Bandwidth (GB/s)

O I I I I I I I I I I
4 8 16 32 64 128 256 512 1024 2048

1/O size (KiB)

32

locality

——6— GPUO GPU1
0.454 e- —90— -
0.4 -
wn
o
O 0.35 -
©
wn
c
o
S 0.3-
0.25 - | \\

512 1024 2048 4096 8192 16384
I/O size (B)

33

evaluation: CPU- vs GPU-centric I/0O

System | Gigabyte G292-720 @ @
CPU AMD EPYC 7402P 24-Core Processor

PCle Switch PCle Switch
DRAM | 8 X 32GB SK Hynix DDR4 2400MHz < oo > < oo >
PCle Brldge PCle Brldge
GPU 2 X NVIDIA Tesla V100-16GB PCle Gen 3
> el ©hen /Root Complex / / Root Complex/
SSDs 4 X 1TB Samsung 980 PRO w/ Heatsink CPU
C C
0S Ubuntu 20.04 LTS (Linux 5.8) /Poo I"m‘"e/L Wi °m'°'e"/
PCle Brldge PCle Brldge
NVIDIA | Driver 550, CUDA 12.6
< PCle Switch > < PCle Switch >

BaMV GitHub ‘master’ branch

GDS Matching CUDA (12.6) @ SSDO @
def

SPDK | v24.09 aul unused

	Slide Number 1
	storage hierarchy – directly attached
	why SSD?
	navigating I/O options for data systems
	once upon a time …
	today – (non-exhaustive) SSD landscape
	a way to approach the landscape
	a way to approach the landscape
	 integration into
	LBA management in nvmefs
	FDP (flexible data placement) SSD support
	evaluation
	nvmefs in action
	spdk with nvmefs
	flexible I/O for data systems
	navigating I/O options for data systems
	journey of data in deep learning training
	reducing the CPU needs for deep learning
	target hardware setup
	conventional: CPU-centric
	GDS: GPU-centric & CPU-initiated
	BaM: GPU-centric & GPU-initiated
	CPU- vs GPU-centric storage access
	bandwidth utilization – 4 SSDs & PCIe
	path to GPU-centric storage access
	navigating I/O options for data systems
	backup
	nvmefs in action
	GMT: GPU-centric & CPU- & GPU-initiated
	GPUfs & ActivePointers: GPU-centric & GPU-initiated I/O
	scalability
	bandwidth utilization – 1 SSD
	locality
	evaluation: CPU- vs GPU-centric I/O

