
www.itu.dkdasya.itu.dk

RAD
rad.itu.dk

Oracle
January 22, 2026

pito@itu.dk
pinartozun.com

Pınar Tözün
Associate Professor
IT University of Copenhagen

toward flexible & accessible
I/O options for data systems

http://www.itu.dk/
https://dasya.itu.dk/
https://rad.itu.dk/
mailto:pito@itu.dk
http://www.pinartozun.com/

storage hierarchy – directly attached

2

core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

registers

NVMe SSD

hard disk

registers

1 cycle

~4 cycles

~10 cycles

~30-60 cycles

~100-200 cycles
or ~60ns

~10 µsec

~5m
s

why SSD?

3

 except for SSDs, each layer stayed almost
stable the past 15 years in terms of latency

• improvements on SSD internals
• from SAS/SATA to PCIe
• linux IO improvements

e.g., multiqueue, io-uring
 improved price/capacity

 led to several SSD-optimized data systems
• RocksDB, BwTree, LeanStore, Umbra …

source: Haas et al., CIDR 2020

shift from pure in-memory-optimized
to SSD-optimized data systems!

https://kernel.dk/blk-mq.pdf
https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://umbra-db.com/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf

• Flexible I/O for Database Management Systems with xNVMe
E. Houlborg, A. N. Tietgen, S. A. F. Lund, M. Weisgut, T. Rabl, J.
Gonzalez, V. Shah, P. Tözün
CIDR 2026

• Path to GPU-Initiated I/O for Data-Intensive Systems
K. B. Torp, S. A. F. Lund, P. Tözün
DaMoN 2025

navigating I/O options for data systems

4

work done in
collaboration with

https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232

once upon a time …

5

us
er

la
nd

ke
rn

el
de

vi
ce

application

filesystem

disk driver

HDD

block layer

po
si

x

traditional I/O path was designed for hard disks

today – (non-exhaustive) SSD landscape

6

data systems tend to avoid dealing with the landscape
target  “generic” SSDs & synchronous POSIX I/O

us
er

la
nd

ke
rn

el
de

vi
ce

spdk
application

filesystem

NVMe driver

SSD

block layer

driver

i/
o

pa
ss

th
ru

io
_u

rin
g

po
si

x
lib

ai
o

NVMe driver

ZNS SSDKV SSD FDP SSD

kv libs zns libs fdp libs

application

a way to approach the landscape

7

xnvme.io

• C API
• C++ can directly use
• bindings for rust & python

• selection of an I/O path …
• done by libxnvme based

on available paths
• or specified by the user

SYSTOR’22

https://xnvme.io/

a way to approach the landscape

8

xnvme.io
us

er
la

nd
ke

rn
el

de
vi

ce

spdk

application

filesystem

NVMe driver

SSD

block layer

driver

i/
o

pa
ss

th
ru

io
_u

rin
g

po
si

x
lib

ai
o

libxnvme

NVMe driver

ZNS SSDKV SSD FDP SSD

kv libs zns libs fdp libs

application

libxnvme

can xNVMe give database systems more I/O flexibility?

https://xnvme.io/

integration into

9

no impact on DuckDB core & minimal impact on usage!

Local File
System

GZip File
System

NVMe File System
nvmefs

File System

. . .

default &
posix-based

× can get better performance if integrated into DuckDB core
e.g., file system calls are still sync even if nvmefs issues async I/O
 our goal is accessible I/O diversity first!

works on
blocks,
not files!

LBA management in nvmefs

10

temp file 1

temp file 2

temp file 3

Temporary File Metadata Manager
…

…
LBA 448-5111
LBA 64-1272

0 LBA 0-63

temporary file blocks

database.db database.db.wal duckdb_temp_storage_*.tmp

logical block address (LBA) range

persisted @LBA 0

FDP (flexible data placement) SSD support

11

nvmefs gives access to FDP SSD
commands via xNVMe

preliminary FDP use:
• database data is long-lived
• temporary file blocks are

short-lived (per query)
• different reclaim unit handles

for database & temporary data

 separates their
garbage collection

reclaim unit handle 0

reclaim unit handle 1

reclaim unit handle n

. . .

reclaim unitsreclaim unitsreclaim unit

reclaim unitsreclaim units

reclaim unitsreclaim unitsreclaim unitreclaim unit

EuroSys’25

erase granularity

evaluation
• baseline

DuckDB LocalFileSystem – posix
• DuckDB nvmefs

xnvme – I/O passhthru
xnvme – I/O passhthru – FDP
xnvme – spdk

on
• TPC-H
• aggregation benchmark

12

ICDE’24

CPU (2X) – Intel® Xeon® Gold 6342
RAM 500 GB
cores (threads) 24 (48)
clock rate (turbo) 2.8 (3.5) GHz
L1 (D/I) per core 48 / 32 KiB
L2 per core 1.3 MiB
L3 shared 36 MiB
OS CentOS Stream 9
kernel (linux) 6.13.0

FDP SSD
capacity 3.76 TB
block size 4 KiB

@ Samsung Memory Research Center

nvmefs in action

13

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ex
ec

ut
io

n
tim

e
(s

ec
) baseline xnvme xnvme-fdp

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21ex
ec

ut
io

n
tim

e
(s

ec
)

tpc-h query #

I/O Passthru & FDP benefit I/O-intensive queries
sequential access (write amplification = 1)

tpc-h 100 (26GB)

tpc-h 1000 (265GB)

posix I/O Passthru
buffer pool

= 20GB

#threads
= 16

~

~50%

~30%

~25%

most ~ +/-1%

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13

ex
ec

ut
io

n
tim

e
(s

ec
)

query #

baseline
xnvme
xnvme-spdk

spdk with nvmefs

14

I/O Passthru & SPDK benefit I/O-intensive queries
SPDK support without hurdles, but could be optimized

- posix
- I/O passthru

scaling
factor
= 32

(5.3GB)

buffer pool
= 2GB

#threads
= 1

aggregation benchmark – wide queries

50%

30%

• diversity of the SSD software & hardware landscape is underutilized
• xNVMe gives a unified access to this landscape
• nvmefs integrates xNVMe into DuckDB
support for io-uring, I/O Passthru, SPDK, flexible data placement …

• steps ahead
• further & detailed performance analysis
• improved default SPDK setup

• better xNVMe buffer management
• more data systems integrated with xNVMe
• write- & random-access heavy workloads

nvmefs

flexible I/O for data systems

15
let’s make modern SSD landscape more accessible!

• Flexible I/O for Database Management Systems with xNVMe
E. Houlborg, A. N. Tietgen, S. A. F. Lund, M. Weisgut, T. Rabl, J.
Gonzalez, V. Shah, P. Tözün
CIDR 2026

• Path to GPU-Initiated I/O for Data-Intensive Systems
K. B. Torp, S. A. F. Lund, P. Tözün
DaMoN 2025

navigating I/O options for data systems

16

https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232

journey of data in deep learning training

17

CPU feeds the GPU
• 16-64 CPU cores per GPU (recommended)
• 96 CPU cores per TPU*

*Audibert et al., “tf.data service: A Case for Disaggregating ML Input Data Processing.” ACM SoCC 2023

otherwise, GPU/TPU may be underutilized
can we do more with fewer CPUs & less of the CPU?

https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826
https://arxiv.org/pdf/2210.14826

• data & work sharing
e.g., CoorDL [PVLDB’21], Joader [NeurIPS’22], tf.data service
[SoCC’23], TensorSocket [SIGMOD’26]

• data pre-processing on the accelerator
e.g., DALI [NVIDIA], FusionFlow [PVLDB’24]

• GPU-centric I/O path
• GPUDirect Storage (GDS)
• Big Accelerator Memory (BaM)

reducing the CPU needs for deep learning

18

what are the trade-offs
of different options?

target hardware setup

19

CPU
memory

GPUPCIe

server

CPU

* PCIe is dropped in the remaining figures for the sake of simplicity in illustrations.

GPU
memory

CPU
GPU

CPU

GPU

GPUGPU

conventional: CPU-centric

20

CPU
memory

GPU

server

CPU

GPU
memory

1

2

3

 ecosystem support
× CPU-bound & overhead from memory copy

GDS: GPU-centric & CPU-initiated

21

CPU
memory

GPU

server

CPU

GPU
memory

1

2

 eliminates the extra memory copy
× still CPU-bound

GPU Direct
Storage

[NVIDIA’19]

BaM: GPU-centric & GPU-initiated

22

CPU
memory

GPU

server

CPU

GPU
memory

1

2

Big
Accelerator

Memory
[ASPLOS’23]

 eliminates the CPU on the path
× ecosystem missing & saturates GPU

CPU- vs GPU-centric storage access

23

workload: random reads
 each mechanism has their own tool for benchmarking

memory
= 128GB

PCIe
AMD
EPYC

7402P

memory
= 16GB

NVIDIA
TESLA
V100

24 cores
>160K
threads

4 × 1TB Samsung 980 PRO
 128 queue pairs

Gen3
x16

Gen4 x4

hardware

mechanisms: CPU-centric: SPDK & GPU-centric: GDS, BaM

bandwidth utilization – 4 SSDs & PCIe

24

GDS is CPU-compute heavy.
 16 logical cores utilized

BaM is limited by the
PCIe Gen3 link & heavy on
the GPU resources.
 whole GPU utilized

CPU-centric SPDK is
resource-efficient but has a
longer path to the GPU.
 2 logical cores utilized

read size (KiB)

Ba
nd

w
id

th
 (G

iB
/s

)

CPU GPU

SSDs

max throughput SSDs

• need to reduce the dependency on CPUs
for more efficient deep learning pipelines

• GPU-centric data path is a way to do that
& we have the mechanisms today (e.g., GDS, BaM)
o GDS has dependency on CPUs still
o BaM requires a lot of GPU resources

when to use each mechanism while being resource-aware?
how to best integrate them into popular deep learning

frameworks or GPU databases for wider-scale use?

path to GPU-centric storage access

25

• Flexible I/O for Database Management Systems with xNVMe
E. Houlborg, A. N. Tietgen, S. A. F. Lund, M. Weisgut, T. Rabl, J.
Gonzalez, V. Shah, P. Tözün
CIDR 2026

• Path to GPU-Initiated I/O for Data-Intensive Systems
K. B. Torp, S. A. F. Lund, P. Tözün
DaMoN 2025

navigating I/O options for data systems

26

thank you!

https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://vldb.org/cidrdb/papers/2026/p6-houlborg.pdf
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232
https://dl.acm.org/doi/10.1145/3736227.3736232

backup

27

nvmefs in action

28

nvmefs helps wide variant (up to 20%)
less I/O-intensive thin variant doesn’t benefit

aggregation benchmark

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13

ex
ec

ut
io

n
tim

e
(s

ec
)

query #

baseline

xnvme

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13

ex
ec

ut
io

n
tim

e
(s

ec
)

query #

thin wide

#threads = 16
buffer pool = 20GB
scaling factor = 128 (22GB)

GMT: GPU-centric & CPU- & GPU-initiated

29

CPU
memory

GPU

server

CPU

GPU
memory

1

2

GPU
Orchestrated

Memory
Tiering

[ASPLOS’24]

2

 hybrid approach, works well if data reuse is high
× extra CPU/GPU resources used

GPUfs & ActivePointers: GPU-centric & GPU-initiated I/O

30

CPU
memory

GPU

server

CPU

GPU
memory

2

3

4

1

[ASPLOS’13] [ISCA’16]

 improves programmability
× longer I/O path, slight performance impact

scalability

31

 BaM requires a page
allocation in GPU memory
for each GPU thread.

More threads doing IO,
more GPU memory needed.

 The sub-scalar performance
for 4 SSDs is due to being
limited by GPU memory.

GPU Threads (Ki)

M
ill

io
ns

 o
f I

O
Ps

bandwidth utilization – 1 SSD

32

locality

33

System Gigabyte G292-Z20

CPU AMD EPYC 7402P 24-Core Processor

DRAM 8 X 32GB SK Hynix DDR4 2400MHz

GPUs 2 X NVIDIA Tesla V100-16GB PCIe Gen 3

SSDs 4 X 1TB Samsung 980 PRO w/ Heatsink

OS Ubuntu 20.04 LTS (Linux 5.8)

NVIDIA Driver 550, CUDA 12.6

BaM GitHub ‘master’ branch

GDS Matching CUDA (12.6)

SPDK v24.09 default unused

evaluation: CPU- vs GPU-centric I/O

34

	Slide Number 1
	storage hierarchy – directly attached
	why SSD?
	navigating I/O options for data systems
	once upon a time …
	today – (non-exhaustive) SSD landscape
	a way to approach the landscape
	a way to approach the landscape
	 integration into
	LBA management in nvmefs
	FDP (flexible data placement) SSD support
	evaluation
	nvmefs in action
	spdk with nvmefs
	flexible I/O for data systems
	navigating I/O options for data systems
	journey of data in deep learning training
	reducing the CPU needs for deep learning
	target hardware setup
	conventional: CPU-centric
	GDS: GPU-centric & CPU-initiated
	BaM: GPU-centric & GPU-initiated
	CPU- vs GPU-centric storage access
	bandwidth utilization – 4 SSDs & PCIe
	path to GPU-centric storage access
	navigating I/O options for data systems
	backup
	nvmefs in action
	GMT: GPU-centric & CPU- & GPU-initiated
	GPUfs & ActivePointers: GPU-centric & GPU-initiated I/O
	scalability
	bandwidth utilization – 1 SSD
	locality
	evaluation: CPU- vs GPU-centric I/O

