
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

An Analysis of Collocation on GPUs for
Deep Learning Training

Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün
IT University of Copenhagen

titr,ehyo,pito@itu.dk

ABSTRACT
Deep learning training is an expensive process that exten-
sively uses GPUs. However, not all model training saturates
modern powerful GPUs. To create guidelines for such cases,
this paper examines the performance of the different colloca-
tion methods available on NVIDIA GPUs: naïvely submitting
multiple processes on the same GPU using multiple streams,
utilizing Multi-Process Service (MPS), and enabling the Multi-
Instance GPU (MIG). Our results demonstrate that collocating
multiple model training runs yields significant benefits, lead-
ing to up to three times training throughput despite increased
epoch time. On the other hand, the aggregate memory foot-
print and compute needs of the models trained in parallel
must fit the available memory and compute resources of the
GPU. MIG can be beneficial thanks to its interference-free
partitioning but can suffer from sub-optimal GPU utilization
with dynamic or mixed workloads. In general, we recom-
mend MPS as the best-performing and most flexible form of
collocation for a single user submitting training jobs.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
chine learning; • Hardware; • Computer systems organi-
zation → Parallel architectures;

KEYWORDS
resource-aware deep learning, collocation on GPUs, MIG
ACM Reference Format:
Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün. 2024.
An Analysis of Collocation on GPUs for Deep Learning Training.
In 4th Workshop on Machine Learning and Systems (EuroMLSys ’24),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroMLSys ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0541-0/24/04. . . $15.00
https://doi.org/10.1145/3642970.3655827

April 22, 2024, Athens, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3642970.3655827

1 INTRODUCTION
Today’s GPUs are significantly more powerful than those of
a decade ago. Modern GPUs, together with larger datasets,
facilitate the exponential growth of deep learning models.
Many data scientists, however, do not require large models
in practice. For example, a problem may not have a large
enough dataset to warrant a large model, or the ideal batch
size for training the model may not be large enough1 to uti-
lize all of the GPU resources [2, 11, 12, 28]. This poses an
hardware under-utilization issue [11, 31] when training neu-
ral networks as the training process usually takes exclusive
access to a GPU. This problem gets exacerbated with each
new GPU generation offering more hardware resources.

Workload collocation is a method for increasing hardware
utilization by running multiple applications at the same time
over the same hardware resources. That way, the device
and its resources are shared among the collocated appli-
cations. While workload collocation is heavily studied for
CPUs [8, 10, 17], its opportunities and challenges have been
largely unexplored for modern GPUs. In addition, unlike
CPUs, GPUs lack sophisticated resource-sharing methods
such as virtual memory and fine-grained sharing.
Today, there are several methods for workload colloca-

tion on a GPU. Firstly, multiple processes can be assigned
to the same GPU simultaneously without any explicit pro-
cess management. Alternatively, the collocation can be more
precisely managed, for example via NVIDIA’s Multi-Process
Service (MPS). Finally, the latest generations of NVIDIA GPUs
can be partitioned into fully isolated GPU instances at the
hardware level via Multi-Instance GPU (MIG).
This paper analyzes different ways of collocating deep

learning model training on NVIDIA GPUs. Specifically, we
investigate the strengths and limitations of the newMIG tech-
nology in contrast to the older methods. We characterize the
performance of the above-mentioned collocation methods
on an A100 GPU. We diversify our workload by considering
three datasets (ImageNet, ImageNet64x64, Cifar10) represent-
ing different sizes (large, medium, small). Furthermore, we
1Data scientists in our lab routinely use less than half of the requested GPU
resources during their model parameter exploration.

1

https://doi.org/10.1145/3642970.3655827
https://doi.org/10.1145/3642970.3655827

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

acknowledge that the current deep learning landscape em-
ploys a wide variety of model architectures. We investigate
two popular convolutional models (ResNet, EfficientNetv2)
and one transformer model (CaiT). Additionally, we collocate
a recommender model with a vision model to demonstrate
the merits of workloads containing models that stress differ-
ent parts of the hardware. Our results highlight that:

• When model training is unable to utilize the full GPU on
its own, i.e., when running on our small- and medium-
sized training cases or cases that stress different parts of
the GPU, training multiple models in collocated fashion
presents considerable benefits. On the other hand, for
large model training, collocation provides either limited
improvements to throughput as the GPU becomes over-
saturated or cause model training to crash when the
available GPU memory is not big enough to hold the
combined memory footprint of the collocated models.

• On all the combinations we evaluated, MPS performs
better than naïve and MIG collocation, allowing single-
user workloads to get the most out of the hardware with
minimal setup required.

• MIG offers strict separation of the GPU’s memory and
compute resources across the collocated workloads, elim-
inating interference. It also allows multi-user colloca-
tion, unlike MPS, and can achieve higher energy effi-
ciency when the partitions are set well. On the other
hand, MIG requires creating hardware partitions a priori.
For the cases of well-defined workloads, one can create
the ideal MIG partitions and leverage MIG-based colloca-
tion. However, for more dynamic workloads where the
workload mix changes over time, MIG would require re-
partitioning to perform well, whereas other collocation
methods still provide benefits.

2 BACKGROUND
This section first provides background on different methods
of collocation. Then, we survey related work on workload
collocation for deep learning.

2.1 Collocation on GPUs
A CUDA stream [1] is a sequence of operations that execute
on the GPU (i.e., kernels and data transfers) in the order they
are issued. While operations within a stream are guaranteed
to execute in the prescribed order, operations in different
streams can run concurrently. This concurrency helps with
overlapping the stall time due to the data transfers between
the host CPU and GPU in one stream with work from an-
other stream. We call this type of workload collocation the
naïve method since it offers a limited way for sharing GPU
resources. This is because the streams have to share the

7g.40gb

3g.20gb3g.20gb

2g.10gb2g.10gb 2g.10gb

1g.5gb1g.5gb 1g.5gb1g.5gb1g.5gb1g.5gb 1g.5gb

1 x 7g.40gb

2 x 3g.20gb

3 x 2g.10gb

7 x 1g.5gb

Figure 1: MIG partitioning schemes on a NVIDIA A100-
40GB GPU. Horizontals can overlap but verticals can-
not. For example, having a 3g.20gb instance is not com-
patible with five 1g.5gb instances but is compatible
with two 2g.10gb instances (figure adapted from [18]).

GPU compute resources in a time-based manner rather than
having resources explicitly dedicated for each stream.
The multi-process service (MPS) [20] enables the host

CPU to launch multiple processes on a single GPU. Similar
to naïve collocation, these processes share the GPU memory
and memory bandwidth. However, unlike naïve collocation,
the streaming multiprocessors (SMs) of the GPU are split
across the different processes. Assignment of the SMs is done
by the MPS daemon automatically, unless explicitly stated
by the user, based on the provisioning of the GPU resources
needed for each process. This reduces interference across
the different processes compared to the naïve approach. One
limitation of MPS is that it cannot collocate applications
launched by different user accounts for security reasons.

Multi-instance GPU (MIG) [18] is the most recent collo-
cation technology introduced with NVIDIA’s Ampere GPUs.
It provides hardware support for splitting a GPU into smaller
GPU instances. Each instance can run a different process al-
lowing these processes to run in parallel on the same GPU.

An A100 GPU with 40GB memory supports several avail-
able partitioning profiles (see Figure 1). The smallest possible
GPU instance is one with just one memory slice and one
compute slice, 1g.5gb, with 14 streaming multiprocessors
(SMs) and 5GB of memory. Consecutively, a 2g.10gb profile
consists of two compute slices (28 SMs) and two memory
slices (10 GB of memory). The other available profiles are
3g.20gb, 4g.20gb, and 7g.40gb. The last profile consists of
almost all of the GPU resources. However, using the GPU
without MIG mode is not analogous to running this large
profile as the compute capability of the GPU is hampered
slightly due to MIG management overhead; i.e. the reduced
compute slice as mentioned above (10 SMs). Each partition is
strictly separated in terms of hardware resources preventing
any form of interference across partitions.

Many different partitions are possible as long as the max-
imum resource capacity is not exceeded. The partitioning
rules are set by the GPU itself, and the allowed set of in-
stances and configurations varies across different types of

2

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

An Analysis of Collocation on GPUs for
Deep Learning Training EuroMLSys ’24, April 22, 2024, Athens, Greece

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

Table 1: Models & Datasets

Model Dataset #Parameters Size
ResNet26 Cifar10 17M small
ResNet50 ImageNet64 24M medium
ResNet152 ImageNet 59M large
EfficientNet_v2_s ImageNet64 22M medium
CaiT_xxs24_224 ImageNet 12M large
DLRM Criteo Terabyte 24B very large

NVIDIA GPUs (A100, A30, H100, H200). Finally, a GPU in-
stance may also be split into multiple compute instances
from the compute side with unified memory. This can be
useful when compute and memory requirements do not fol-
low the same pattern. For example, one could run a memory
intensive model and a compute intensive model with isolated
compute instances on a single GPU instance.

2.2 Related work
Collocation on GPUs have been studied in two dimensions:
software and hardware approaches. Software approaches
either focus on developing better primitives for collocation
on GPUs or provisioning the resources of GPUs for running
multiple applications [3, 22, 34]. In contrast, hardware ap-
proaches propose micro-architectural changes to GPUs to
enable finer-grained and more precise multi-application exe-
cution within a GPU considering performance, utilization,
and quality of service trade-offs [6, 7, 29, 30, 33, 36].
MIG is a relatively new technology and there have not

been many works that thoroughly explore its possibilities.
HFTA [28] is a mechanism to fuse multiple model training
runs for hyper-parameter tuning into one training run. The
authors show the effectiveness of HFTA compared to using
MPS or MIG to run multiple training runs in parallel. MISO
[15] runs MPS on a 7g.40gbMIG instance to predict the best
MIG configuration for different jobs. Finally, Li et al. [14]
characterize performance of only MIG using deep learning
models focusing on time and energy metrics.

In general, our work is orthogonal to these works since we
investigate the strengths and limitations of MIG in contrast
to the older collocation techniques such as MPS and naïve
collocation and use workloads of different sizes.

3 IMPACT OF COLLOCATION
3.1 Setup & Methodology
System. Our experiments run on a DGX Station A100, com-
posed of an AMD EPYC 7742 CPU (64 cores, 512GB RAM)
and four A100 40GB GPUs (108 SMs). Each of the A100 GPUs
have 40GB of VRAM and support up to 7 MIG instances with
at least 5 GB of memory per instance (see Section 2.1).

Experiments. The experiments are devised with varying
dataset sizes [4, 5, 13, 25] and models [9, 16, 26, 27] to assess
the performance of collocating deep learning training un-
der different loads (Table 1). We orchestrate the execution
of the workloads via a benchmarking framework [23]. The
vision models are sourced from the TIMM library [32], the
recommender model from Facebook Research [16], and we
are using the latest version of PyTorch as of the start of our
experiments (2.0) [21].

3.2 Uniform Collocation
Figures 2-4 illustrate the results of our uniform collocation
experiments. Each figure illustrates a particular model and
dataset combination (as subset of the listed combinations
in Table 1).2 Bars that are grouped together form one collo-
cated workload with models trained in parallel. The different
degrees of collocation are separated by dotted vertical lines.
The four non-collocated cases, which do not run any models
in parallel, are the first four bars and form our baselines.

3.2.1 Time per Epoch. Our main performance metric when
comparing the effectiveness of different collocation methods
is Time per epoch. We time the second epoch of training,
skipping the first one as warm-up.
Looking at the first four bars of Figures 2a-4a, reveals

that there is a little variation between the first three non-
collocated workloads: naïve, mps, and 7g.40gb. This indi-
cates that MPS and MIG have negligible overhead. On the
other hand, we see the impact of having fewer resources
available on the 4g.20gbMIG instance as the workloads get
larger in Figures 3a-4a.
Going over to the collocated runs, comparing across the

different collocation mechanisms on Figures 2a-4a reveals
that MIG-based collocation performs better as the degree
of parallelism increases (especially to 7). MPS reveals itself
as a clear winner, offering the best performance across the
board. In contrast, naïve collocation is the least effective. We
attribute the superior performance ofMPS to its more flexible
resource management allowing more effective collocation
(as Section 3.3 also shows) and the lower compute resources
that are available to MIG (Section 2.1).

As expected, collocation impacts the time it takes to train
the individual models due to interference across the col-
located runs. Additionally, as the degree of collocation in-
creases, so does the total time to train the models. On the
other hand, multiple models finish training simultaneously,
increasing training throughput. For example, except for the
large workloads, 2-way collocation delivers two models in
roughly the same time as no-collocation delivers one model.
3-way collocation with MPS and MIG leads to a 50-110%

2A larger set of results can be found in our longer report [24].
3

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

0

5

10

15

20

25

30

35

40

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(s
e

co
n

d
s)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c) Memory footprint

Figure 2: Small: ResNet26 + Cifar10 (batch size = 128).

0

10

20

30

40

50

60

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(m
in

u
te

)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c) Memory footprint

Figure 3: Medium: EfficientNet_s + ImageNet64 (batch size = 128).

0

0.5

1

1.5

2

2.5

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

se
ri

al

1X 2X

Ep
o

ch
 T

im
e

(h
o

u
r)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

1X 2X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0
5

10
15
20
25
30
35
40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

1X 2X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c) Memory footprint

Figure 4: Large: CaiT + ImageNet (batch size = 128).

increase in time per epoch compared to non-collocated case
while delivering three model training runs instead of one.
7-way collocation with MPS and MIG only increases the
runtime 2X-2.5X for our smallest workload (Figure 2) while
delivering 7 models in parallel. These results clearly show
that collocation is valuable when a single training run is not
large enough for the available GPU compute and memory
resources; e.g., the small and medium cases.
However, the picture shifts considerably with the large

workloads (Figure 4). We no longer see improvements for
all of the collocated runs. MPS remains strong and is the
only form of collocation that remains beneficial in terms of
throughput. Under naïve collocation, one epoch of training

takes roughly as long as training the models in sequence
without collocation. MIG fairs a little better under 2-way
collocation, but is not advantageous. Additionally, 3-way
and 7-way collocation becomes impossible due to memory
constraints.

3.2.2 GPU utilization. We use SM Activity to track GPU
utilization, [35], which is reported by the dcgm tool [19].
For the small case and 7-way collocation, the benefits of col-
location become very visible. With ResNet’s embarrassingly
parallel nature and the larger batch size allowing even more
parallelism, high utilization of the GPU compute resources
is achieved without overloading the GPU (Figure 2b). The

4

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

An Analysis of Collocation on GPUs for
Deep Learning Training EuroMLSys ’24, April 22, 2024, Athens, Greece

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

0
50

100
150
200
250
300

0 10 20 30 40 50 60

R
ec

ei
ve

d
 (

M
B

)

Time (second)

1X 2X 3X 7X

(a) Naïve

1
4

16
64

256
1024
4096

16384

0 5 10 15 20 25 30

R
ec

ei
ve

d
 (

M
B

)

Time (second)

1x 2x 3x 7x

(b) Multi-Process Service

Figure 5: Traffic from CPU to GPU during the second
epoch of ResNet26 + Cifar10 (batch size 32) training.

medium case reflects the same pattern, though starts hitting
compute resource boundaries under 7-way collocation, as
seen in Figure 3b. As a result, collocation provides consider-
able benefits for the small and medium cases with MIG and
especially with MPS. For the large case (Figure 4b), there is
little variety in the GPU utilization across different cases.

3.2.3 GPU memory footprint. Finally, Figures 2c-4c report
the aggregatememory footprint on the GPU for different
collocation methods for each workload. We use nvidia-smi
to collect the memory consumption for the whole GPU af-
ter a full epoch of training to signify how much memory
is needed for the model to train. The figures demonstrate
that the increase in memory footprint with collocation is
proportional to the degree of collocation. This is an expected
result as the models are not sharing data across collocated
runs in these experiments.

Notably, MIG collocation shows slightly smaller memory
footprints than the two other options, which prompted us to
delve deeper into PyTorch’s memory allocation. We discov-
ered that PyTorch adjusts the memory footprint depending
on the total available memory, which is less in the case of
non-7g.40gb MIG instances compared to whole GPU mem-
ory available under MPS and naïve. Switching the memory
allocator backend from PyTorch’s native implementation
to CUDA’s built-in asynchronous allocator removes the dif-
ferences in the memory footprint of different collocation
methods. However, we do not recommend this switch as it
slows down the training process.

3.2.4 Interconnect Traffic. Figure 5 reports the amount of
bytes received over time by the GPU measured by dcgm’s

0

5

10

15

20

n
aï

ve

M
P

S

4
g.

2
0

gb

7
g.

4
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

En
e

rg
y

(K
J)

Collocation option, # of collocated models (top to bottom)

Figure 6: GPU energy consumption to complete the 2nd
epoch of ResNet26 + Cifar10 (batch size 32) training.

pcie_rx_bytes. We compare naïve andMPS collocation dur-
ing the second epoch of small ResNet training with batch
size 32. We pick this small case as it benefits greatly from
collocation and can highlight the differences across the collo-
cation scenarios more effectively. MIG is omitted here due to
dcgm not providing the readings for this metric under MIG
as a result of the GPU being split into multiple instances.
For lower degrees of collocation, naïve collocation leads

to a linear increase in data transferred over PCIe from CPU
to GPU with respect to degree of collocation. On the other
hand, for the 7-way case, there is less work being done per
unit of time for each training run leading to sub-linear PCIe
traffic. This is likely caused by the throughput benefits of
collocation taking a huge hit under naïve collocation, as
shown in Section 3.2.1. In contrast, MPS exhibits a super-
linear increase in PCIe utilization when collocating models.
In addition to the data transfers for the collocated runs, MPS
increases the kernel launch processes since it is able to elim-
inate false dependencies and share the GPU resources more
effectively across the collocated kernels (Section 2.1).

3.2.5 Energy Consumption. Finally, we look at the power us-
age andGPU energy consumption using dcgm’s power_usage
(watts) and total_energy_consumption (joules), respec-
tively, for the small ResNet training. Figure 7 shows that
collocation scenarios that are highly effective may run on
higher power but finish much quicker. This is due to higher
GPU utilization under MPS and MIG. MIG exhibits signif-
icantly lower wattage under 7-way collocation than MPS
while training slightly slower. The benefits of this can be
seen in Figure 6, which reports the total GPU energy con-
sumption of the second epoch of the model training. While
requiring higher power usage per unit of time, MPS spends
less energy compared to naïve collocation thanks to finish-
ing training faster. While not as fast as MPS, MIG in general
exhibits the lowest GPU energy footprint.

5

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

0
50

100
150
200
250
300

0 5 10 15 20 25 30 35 40 45 50 55 60

Po
w

er
 (

W
)

Time (second)

1X 2X 3X 7X

(a) Naïve

0
50

100
150
200
250
300

0 5 10 15 20 25 30

Po
w

er
 (

W
)

Time (second)

1x 2x 3x 7x

(b) Multi-Process Service

0
50

100
150
200
250
300

0 5 10 15 20 25 30 35

Po
w

er
 (

W
)

Time (second)

1X - 40GB 1X - 20GB 2X 3X 7X

(c) Multi-Instance GPU

Figure 7: GPU power usage during the second epoch of ResNet26 + Cifar10 (batch size 32) training.

0

5

10

15

20

25

30

Ex
ec

u
ti

o
n

 T
im

e
(m

in
u

te
) Naïve MPS MIG Serial

0

25

50

75

100

125

150

175

200

225

S + L M + L

Ex
ec

u
ti

o
n

 T
im

e
(m

in
u

te
)

Figure 8: Time for training mixed vision workloads
with & without (serial) collocation for two epochs.

3.3 Mixed Workloads
So far, we focused on homogeneous collocation scenarios.
Such cases can be extremely useful in practice when a data
scientist is performing hyper-parameter tuning to come up
with the ideal set of parameters for a model repeatedly run-
ning the same model with a different set of parameters. On
the other hand, there is also value in investigating non-
homogeneous collocation scenarios to observe what happens
when individual training runs stress the GPU unequally.

We select combinations of small, medium, and large ResNet
models with corresponding dataset sizes to collocate for the
heterogeneous runs (as listed in Table 1). For the MIG work-
loads, these run on 1g.5gb, 2g.10gb and 4g.20gb, respec-
tively. We opted to keep a static MIG configuration while
testing heterogeneous collocation since in a real-world sce-
nario, e.g., in a data center, the MIG partitions would already
be set and reallocating resources after each training run
could be impractical.
Figure 8 details the total execution time for training the

collocated models using the different collocation methods
in comparison to training them back to back, serial, without
collocation. We see that the benefits of collocation vary heav-
ily across workloads. For larger workloads such as "S+M+M"
and "S+S+M+M", naïve and MPS collocation provide sizeable
benefits by training the small model without impacting the
medium one. In general, the flexibility of both naïve colloca-
tion and MPS is a great advantage here over MIG.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

SM
A

C
T

Time (second)

naïve MPS MIG

(a) Streaming Multiprocessor Activity (SMACT)

0

10

20

30

40

0 200 400 600 800 1000 1200M
em

o
ry

 F
o

o
tp

ri
n

t
(G

B
)

Time (second)

naïve MPS MIG

(b) Memory footprint

Figure 9: GPU utilization and memory footprint over
time for S+M+M+M from Figure 8.

Figure 9 dives deeper into the "S+M+M+M" workload
to observe how the GPU utilization and memory footprint
changes over time during collocated runs with naïve, MPS,
and MIG collocation. We pick this mix as it is the one that
utilizes MIG instances the best. The GPU utilization under
MIG gets lowered after the small model finishes, since MIG is
unable to fill-up the corresponding instance with more work.
On the other hand, naïve and MPS are able to keep similar
GPU utilization throughout. In contrast, the memory foot-
print follows a similar trend for all collocation strategies. It is
higher in the beginning as all four models are training. The
values then drop off quickly once the small model finishes
training.

Furthermore, to investigate the impact of collocatingmixed
workloads that stress different hardware resources, we show
the results of collocating a recommender model with a large
vision model training in Table 2. We configure two 3gMIG
compute instances to share memory as the recommender
model does not fit into the memory of smaller GPU instances.

Adding a memory-heavy model such as the recommender
greatly promotes collocation. Training time only increases
slightly when collocating these, going between 4%-14% and

6

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

An Analysis of Collocation on GPUs for
Deep Learning Training EuroMLSys ’24, April 22, 2024, Athens, Greece

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

Table 2: Mixed collocation ofmemory-intensive recom-
mender and compute-intensive vision models. Recom-
mender time is for one training block plus validation.
ResNet time is for one epoch. The reported increase in
time (%) is relative to the sequential run.

Workload Time (h) GPU Util. Memory (GB)Recom. ResNet Total
Recommender 5.36 - 6.41 5% 29.14
ResNet152 - 1.05 82% 8.47
Naïve 6.09 (+14%) 1.11 (+6%) 6.09 (-5%) 81% 37.75
MPS 5.57 (+4%) 1.10 (+5%) 5.57 (-13%) 81% 37.62

MIG (shared) 5.60 (+4%) 1.40 (+33%) 5.60 (-13%) 39% 37.86

4%-33% for the recommender and ResNet, respectively. MPS
performs especially well, training both models with just a 4%
increase in training time. As before, memory consumption
roughly corresponds to the sum of both models. However,
GPU utilization does not increase. Under MIG, unfortunately,
only part of the computing power of the GPU can be assigned
to ResNet, even though the recommender requires little.

3.4 Summary & Collocation Guidelines
Based on the results we covered, we now provide some guide-
lines for deep learning training collocation.
• Workload collocation is highly beneficial when the ag-
gregate compute and memory needs of the collocated
deep learning training runs fit the GPU.

• Collocation gives diminishing returns when the GPU
utilization of an individual run is already close to 100%.

• The aggregate memory footprint of the collocated runs
can effectively be estimated by the sum of the memory
footprints of the individual runs and cannot exceed the
available memory on the GPU.

• MPS achieves better performance across the board thanks
to its flexible distribution of hardware resources among
the collocated runs. On the other hand, it requires higher
interconnect bandwidth.

• MIG can support collocation effectively when a strict
separation is required among the runs thanks to its rigid
partitioning even though this partitioning leads to sub-
optimal performance compared to MPS. Furthermore,
MIG exhibits higher energy efficiency on GPUs when
the instances are configured well for the workload.

4 CONCLUSION
In this paper, we provide a performance characterization on
a modern GPU device that has support for multiple means of
GPU collocation: naïve, MPS, and MIG. Our results demon-
strate that GPU collocation is highly beneficial for small-
and medium-sized workloads that cannot fully saturate the
whole GPU. Although per-model training is overall slower,
parallel execution of workloads can utilize GPU resources

more effectively, increasing training throughput. MIG no-
tably requires a rigid setup while providing full isolation
across its instances.
If the workload across the instances is imbalanced, runs

that finish early will leave some instances idle, unless there
is other work that could be allocated over those instances.
Naïve collocation and MPS, on the other hand, can utilize the
resources released by the finished work, increasing the train-
ing performance of models that require more time to train.
In general, MPS provides the best collocation performance,
if not the most energy efficient.
In this work, we limited our focus to training on a single

GPU since NVIDIA does not allow multi-GPU training with
MIG. we limited our focus to training on a single GPU since
NVIDIA does not allow multi-GPU training with MIG. In a
data center, many workloads can be collocated not only on
the same GPU but also on the same server. Therefore, study-
ing the impact of collocation while running other workloads
on other GPUs on the same device would be interesting fu-
ture work. Furthermore, considering the results with the
recommender model, further investigations of the shared
memory instances of MIG would be worthwhile.

ACKNOWLEDGEMENTS
This work is funded by the Independent Research Fund Den-
mark’s (Danmarks Frie Forskningsfond; DFF) Sapere Aude
program under grant agreement number 0171-00061B and
Inge Lehman program under grant agreement number 0171-
00062B. We also thank DASYA lab members at IT University
of Copenhagen for their support, and the reviewers of Eu-
roMLSys for their constructive feedback.

REFERENCES
[1] [n.d.]. GPU Pro Tip: CUDA 7 Streams Simplify Concurrency.

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-
simplify-concurrency/. Accessed: 2022-10-21.

[2] Sebastian Baunsgaard, Sebastian Benjamin Wrede, and Pınar Tözün.
2020. Training for Speech Recognition on Coprocessors. In ADMS.

[3] Mehmet E. Belviranli, Farzad Khorasani, Laxmi N. Bhuyan, and Ra-
jiv Gupta. 2016. CuMAS: Data Transfer Aware Multi-Application
Scheduling for Shared GPUs. In Proceedings of the 2016 International
Conference on Supercomputing (ICS ’16). Association for Computing
Machinery, Article 31, 12 pages.

[4] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2017. A Down-
sampled Variant of ImageNet as an Alternative to the CIFAR datasets.
CoRR arXiv (2017).

[5] Criteo. [n.d.]. Criteo 1TB Click Logs dataset. https:
//www.criteo.com/news/press-releases/2015/07/criteo-releases-
industrys-largest-ever-dataset/.

[6] Hongwen Dai, Zhen Lin, Chao Li, Chen Zhao, Fei Wang, Nanning
Zheng, and Huiyang Zhou. 2018. Accelerate GPU Concurrent Kernel
Execution by Mitigating Memory Pipeline Stalls. In 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
208–220.

7

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

[7] Sina Darabi, Negin Mahani, Hazhir Baxishi, Ehsan Yousefzadeh-Asl-
Miandoab, Mohammad Sadrosadati, and Hamid Sarbazi-Azad. 2022.
NURA: A Framework for Supporting Non-Uniform Resource Accesses
in GPUs. Proc. ACM Meas. Anal. Comput. Syst. 6, 1 (feb 2022).

[8] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In ASPLOS. 127–144.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In CVPR. 770–778.

[10] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center. In NSDI. 295–308.

[11] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). 947–960.

[12] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo
Mai, Paolo Costa, and Peter Pietzuch. 2019. Crossbow: Scaling Deep
Learning with Small Batch Sizes on Multi-GPU Servers. PVLDB 12, 11
(2019), 1399–1412.

[13] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny
images. Technical Report. University of Toronto.

[14] Baolin Li, Viiay Gadepally, Siddharth Samsi, and Devesh Tiwari. 2022.
Characterizing Multi-Instance GPU for Machine Learning Workloads.
In 2022 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW). 724–731.

[15] Baolin Li, Tirthak Patel, Siddarth Samsi, Vijay Gadepally, and Devesh
Tiwari. 2022. MISO: Exploiting Multi-Instance GPU Capability on
Multi-Tenant GPU Clusters. In ACM SoCC.

[16] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. 2019. Deep Learning Recommendation Model for Per-
sonalization and Recommendation Systems. CoRR abs/1906.00091
(2019). https://arxiv.org/abs/1906.00091

[17] Konstantinos Nikas, Nikela Papadopoulou, Dimitra Giantsidi, Vasileios
Karakostas, Georgios Goumas, and Nectarios Koziris. 2019. DICER:
Diligent Cache Partitioning for Efficient Workload Consolidation. In
ICPP.

[18] NVIDIA 2021. NVIDIA Multi-Instance GPU User Guide. NVIDIA.
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/.

[19] NVIDIA. 2022. Data Center GPU Manager Documentation. Technical
Report. NVIDIA. https://docs.nvidia.com/datacenter/dcgm/latest/
dcgm-user-guide/.

[20] NVIDIA. 2022. Multi-Process Service. Technical Report. NVIDIA Cor-
poration. https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_
Service_Overview.pdf

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32.
8024–8035.

[22] Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and Srimat Chakrad-
har. 2011. Supporting GPU Sharing in Cloud Environments with a
Transparent Runtime Consolidation Framework (HPDC ’11). Associa-
tion for Computing Machinery, 217–228.

[23] Ties Robroek, Aaron Duane, Ehsan Yousefzadeh-Asl-Miandoab, and
Pinar Tözün. 2023. Data Management and Visualization for Bench-
marking Deep Learning Training Systems. In Proceedings of the Sev-
enth Workshop on Data Management for End-to-End Machine Learning,
DEEM 2023, Seattle, WA, USA, 18 June 2023. ACM, 1:1–1:5. https:
//doi.org/10.1145/3595360.3595851

[24] Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, and Pınar Tözün.
2023. An Analysis of Collocation on GPUs for Deep Learning Training.
arXiv:2209.06018 [cs.LG]

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. IJCV 115, 3 (2015), 211–252.

[26] Mingxing Tan and Quoc V. Le. 2021. EfficientNetV2: Smaller Models
and Faster Training. CoRR abs/2104.00298 (2021). arXiv:2104.00298
https://arxiv.org/abs/2104.00298

[27] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Syn-
naeve, and Hervé Jégou. 2021. Going deeper with image transformers.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 32–42.

[28] Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li, and Gennady
Pekhimenko. 2021. Horizontally Fused Training Array: An Effective
Hardware Utilization Squeezer for Training Novel Deep Learning
Models. Proceedings of Machine Learning and Systems 3 (2021), 599–
623.

[29] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. 2016. Simultaneous Multikernel GPU: Multi-
tasking throughput processors via fine-grained sharing. In 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 358–369.

[30] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. 2017. Quality of service support for fine-
grained sharing on GPUs. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). 269–281.

[31] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in
the Wild: Workload Analysis and Scheduling in Large-Scale Heteroge-
neous GPU Clusters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). USENIX Association, 945–960.
https://www.usenix.org/conference/nsdi22/presentation/weng

[32] Ross Wightman. 2019. PyTorch Image Models. https://github.com/
rwightman/pytorch-image-models.

[33] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali
Annavaram. 2016. Warped-Slicer: Efficient Intra-SM Slicing through
Dynamic Resource Partitioning for GPU Multiprogramming. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA). 230–242.

[34] Gingfung Yeung, Damian Borowiec, Renyu Yang, Adrian Friday,
Richard Harper, and Peter Garraghan. 2022. Horus: Interference-
Aware and Prediction-Based Scheduling in Deep Learning Systems.
IEEE Transactions on Parallel and Distributed Systems 33, 1 (2022),
88–100. https://doi.org/10.1109/TPDS.2021.3079202

[35] Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, and Pinar Tözün.
2023. Profiling and Monitoring Deep Learning Training Tasks. In
Proceedings of the 3rd Workshop on Machine Learning and Systems,
EuroMLSys 2023, Rome, Italy, 8 May 2023, Eiko Yoneki and Luigi Nardi
(Eds.). ACM, 18–25. https://doi.org/10.1145/3578356.3592589

[36] Xia Zhao, Zhiying Wang, and Lieven Eeckhout. 2018. Classification-
Driven Search for Effective SM Partitioning in Multitasking GPUs. In
Proceedings of the 2018 International Conference on Supercomputing.
65–75.

8

https://arxiv.org/abs/1906.00091
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-user-guide/
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-user-guide/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://doi.org/10.1145/3595360.3595851
https://doi.org/10.1145/3595360.3595851
https://arxiv.org/abs/2209.06018
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2104.00298
https://www.usenix.org/conference/nsdi22/presentation/weng
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.1109/TPDS.2021.3079202
https://doi.org/10.1145/3578356.3592589

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

An Analysis of Collocation on GPUs for
Deep Learning Training EuroMLSys ’24, April 22, 2024, Athens, Greece

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

0

20

40

60

80

100

120

140

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

 (
se

co
n

d
)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
o

n
 (

G
B

)

Collocation option, # of collocated models (top to bottom)

(c) Memory footprint

Figure 10: Small: ResNet26 + Cifar10 (batch size = 32).

0

20

40

60

80

100

120

140

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(s
e

co
n

d
)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c) Memory footprint

Figure 11: Small: EfficientNet_s + Cifar10 (batch size = 128).

0

20

40

60

80

100

n
aï

ve
m

p
s

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(m
in

u
te

)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c) Memory footprint

Figure 12: Medium: ResNet50 + ImageNet64 (batch size = 32).

A ADDITIONAL UNIFORM
COLLOCATION RESULTS

As part of our investigation of the collocation mechanisms,
we have also experimented with varying the batch size and

tested out additional model and dataset combinations.We are
sharing the results from those experiments in this appendix
for completeness in Figures 10-14, even though they do not
change the key conclusions of this paper.

9

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

EuroMLSys ’24, April 22, 2024, Athens, Greece Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

0

5

10

15

20

25

30

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb
se

ri
al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

n
aï

ve

M
P

S

1
g.

5
gb

se
ri

al

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(m
in

u
te

s)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c) Memory footprint

Figure 13: Medium: ResNet50 + ImageNet64 (batch size = 128).

0

0.5

1

1.5

2

2.5

3

3.5

4

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

se
ri

al

n
aï

ve

M
P

S

2
g.

1
0

gb

se
ri

al

1X 2X 3X

Ep
o

ch
 T

im
e

(h
o

u
r)

Collocation option, # of collocated models (top to bottom)

(a) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

1X 2X 3X

U
ti

liz
at

o
in

Number of models, collocation option (bottom to top)

mean max

(b) GPU utilization

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

1X 2X 3X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(c) Memory footprint

Figure 14: Large: ResNet152 + ImageNet (batch size = 32).

10

	Abstract
	1 Introduction
	2 Background
	2.1 Collocation on GPUs
	2.2 Related work

	3 Impact of Collocation
	3.1 Setup & Methodology
	3.2 Uniform Collocation
	3.3 Mixed Workloads
	3.4 Summary & Collocation Guidelines

	4 Conclusion
	References
	A Additional Uniform Collocation Results

