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when do we need caches
in the cloud?

can we eliminate them?

Robust Query Processing in the Cloud
Dagstuhl Seminar 24101



spoilers – caching is beneficial in the cloud … 

if an object needs to be accessed 

 7 times per second in a latency-insensitive workload

 2 times per hour in a latency-sensitive workload
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if you care about latency in disaggregated architectures,
you are going to need an object store cache!
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1987

when does it make economic sense to cache disk pages in 
DRAM?  if they are reused at least every 5mins.
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what changes for the cloud?
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what changes for the cloud? – storage hierarchy
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conventional 5-min rule cloud 
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what changes for the cloud? – costs
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conventional 5-min rule cloud 
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what changes for the cloud? – network 
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AWS EC2 instances

some compute instances have higher bandwidth than local 
storage, but this doesn’t guarantee stable or low latency!
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Given a latency target,
how often must an application access 
an object to justify caching instead of 
directly fetching from object storage?

5-min rule in the cloud – for cloud analytics
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cost of not caching
=  cost per object store request  X  (number of requests  – 1) 

cost of caching
=  (hourly storage cost per GB  +  hourly instance cost per GB)

X  cache size in GB
X  lifetime of cache in hours
+  cache miss rate  X number of requests  X  cost per object store request

the model – latency-insensitive cases
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cost of not caching
=  cost per object store request  X  (number of requests  – 1) 

cost of caching – separate cache instances
=  (hourly storage cost per GB  +  hourly instance cost per GB)

X  cache size in GB
X  lifetime of cache in hours
+  cache miss rate  X number of requests  X  cost per object store request

cost of caching – same instance
=  cost of caching at separate instance  – instance cost without cache

the model – latency-insensitive cases



cost of not caching
=  cost per object store request

X  (number of requests  – 1) 
X  concurrent reads to

guarantee latency

cost of caching
 same as previous
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the model – latency-sensitive cases
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requires measurement!
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on AWS m7 instances
with ARM Graviton processors

preliminary evaluation
S3 cost per request 0.0000004$
EBS monthly storage cost per GB 0.08$ 
hourly on-demand compute instance costs
m7g with EBS 0.0408$
m7gf with 59GiB NVMe SSD 0.0534$

object store access latency values
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results – when does it make sense to cache?
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summary
need a separate framework to reason about caching in the cloud
• storage hierarchy relies on object stores
• cost of storage access isn’t 0 after deployment
• hence, the 5-min rule needs revisiting

preliminary evaluation shows that
• for latency-insensitive cases, you can live without a cache

• considering the cost of maintaining caches
• for latency-sensitive cases, you need an object store cache
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thank you!



backup
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going forward …
• evaluation of other vendors

• … given access latency measurements
• cases that need larger cloud instances

• e.g., to get more vCPUs – necessary for throughput
• you get the storage space on the side, which you can use for 

caching – does it make caching less costly, overall?
• separate considerations for meta-data and data

• or do we assume that meta-data will likely be cached, regardless?
• modeling advanced caching

• involving data transformations / push-down on the way
• transaction processing - impact of updates
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conventional 5-min rule

22



23



calculating required repeated reads 
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knowing the latency distribution of requests to read an object of a certain 
size from the object store, we know
• P  probability of reading an object within the target latency 

if there are n independent requests for this object
• (1 – P)  probably of all of them taking longer than target latency
• P’ = 1 - (1 – P)     probability that at least one of the n reaches target

as the user, you can pick your desired P’ (e.g., 99%)
then, given a P’, solving n yields

n

n



racing reads
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latency distribution for racing 1MiB reads to S3.
pN represents the Nth percentile:
N% of the requests completed within this time. requests needed to download 10GiB from S3, 

where each request finishes in 150ms with 99% 
probability.
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results – when does it make sense to cache?
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