
the 5-minute rule for the cloud:
caching in analytics systems

Kira Duwe, Angelos Anadiotis, Andrew Lamb,
Lucas Lersch, Boaz Leskes, Daniel Ritter, Pınar Tözün

January 20, 2025 CIDR 2025

2

when do we need caches
in the cloud?

can we eliminate them?

Robust Query Processing in the Cloud
Dagstuhl Seminar 24101

spoilers – caching is beneficial in the cloud …

if an object needs to be accessed

 7 times per second in a latency-insensitive workload

 2 times per hour in a latency-sensitive workload

3

if you care about latency in disaggregated architectures,
you are going to need an object store cache!

4

1987

when does it make economic sense to cache disk pages in
DRAM? if they are reused at least every 5mins.

5

6

what changes for the cloud?

7

what changes for the cloud? – storage hierarchy

8

conventional 5-min rule cloud

memory

NVMe SSD

hard diskmsec

µsec

nsec

• compute & storage disaggregation
• object store has the ground-truth for data

caching layer

object store
(S3, blob store …)

compute 1
memory

SSD
cache

compute 2
memory

SSD
cache

remote memory, SSD, block storage (EBS, managed disks …)

what changes for the cloud? – costs

9

conventional 5-min rule cloud

memory

NVMe SSD

hard diskmsec

µsec

nsec

storage devices
• compute instances
• data storage
• object store accesses

caching layer

object store
(S3, blob store …)

compute 1
memory

SSD
cache

compute 2
memory

SSD
cache

remote memory, SSD, block storage (EBS, managed disks …)

what changes for the cloud? – network

10

0

3

6

9

12

15

18

21

0 3 6 9 12lo
ca

l r
ea

d
ba

nd
w

id
th

 (G
B/

s)

network bandwidth / read bandwidth from S3 (GB/s)

i3 (Nov'16)

i3en (May'19)

d3 (Dec'20)

im4gn (Nov'21)

is4gen (Nov'21)

i4i (Apr'22)

i4g (May'23)

AWS EC2 instances

some compute instances have higher bandwidth than local
storage, but this doesn’t guarantee stable or low latency!

11

Given a latency target,
how often must an application access
an object to justify caching instead of
directly fetching from object storage?

5-min rule in the cloud – for cloud analytics

12

cost of not caching
= cost per object store request X (number of requests – 1)

cost of caching
= (hourly storage cost per GB + hourly instance cost per GB)

X cache size in GB
X lifetime of cache in hours
+ cache miss rate X number of requests X cost per object store request

the model – latency-insensitive cases

13

cost of not caching
= cost per object store request X (number of requests – 1)

cost of caching – separate cache instances
= (hourly storage cost per GB + hourly instance cost per GB)

X cache size in GB
X lifetime of cache in hours
+ cache miss rate X number of requests X cost per object store request

cost of caching – same instance
= cost of caching at separate instance – instance cost without cache

the model – latency-insensitive cases

cost of not caching
= cost per object store request

X (number of requests – 1)
X concurrent reads to

guarantee latency

cost of caching
 same as previous

14

the model – latency-sensitive cases

0

50

100

150

200

1 2 3 4 5 6

99
%

 la
te

nc
y

(m
s)

concurrent (racing) reads

racing reads to reach the latency target
 concurrent requests for the object
 proceed with the first response,

ignore the rest

1MiB reads to S3

target latency

only term that
requires measurement!

15

on AWS m7 instances
with ARM Graviton processors

preliminary evaluation
S3 cost per request 0.0000004$
EBS monthly storage cost per GB 0.08$
hourly on-demand compute instance costs
m7g with EBS 0.0408$
m7gf with 59GiB NVMe SSD 0.0534$

object store access latency values

16

results – when does it make sense to cache?

0

0.02

0.04

0.06

0.08

0.1

0 50000 100000 150000 200000 250000

co
st

 ($
)

requests per hour

separate EBS separate NVMe
on-node EBS on-node NVMe
S3

0

0.02

0.04

0.06

0.08

0 2 4 6

co
st

 ($
)

repeated 1 GiB reads per hour

S3
EBS
NVMe

latency insensitive latency sensitive

(with 1MiB accesses
& 95% cache hits)

even with cheapest option
7 requests per sec for an object

2 requests per hour for an object
is enough to justify caching

(100% cache hits)

99% target 100ms latency per 1MiB access

summary
need a separate framework to reason about caching in the cloud
• storage hierarchy relies on object stores
• cost of storage access isn’t 0 after deployment
• hence, the 5-min rule needs revisiting

preliminary evaluation shows that
• for latency-insensitive cases, you can live without a cache

• considering the cost of maintaining caches
• for latency-sensitive cases, you need an object store cache

17

thank you!

backup

18

going forward …
• evaluation of other vendors

• … given access latency measurements
• cases that need larger cloud instances

• e.g., to get more vCPUs – necessary for throughput
• you get the storage space on the side, which you can use for

caching – does it make caching less costly, overall?
• separate considerations for meta-data and data

• or do we assume that meta-data will likely be cached, regardless?
• modeling advanced caching

• involving data transformations / push-down on the way
• transaction processing - impact of updates

19

conventional 5-min rule

22

23

calculating required repeated reads

24

knowing the latency distribution of requests to read an object of a certain
size from the object store, we know
• P probability of reading an object within the target latency

if there are n independent requests for this object
• (1 – P) probably of all of them taking longer than target latency
• P’ = 1 - (1 – P) probability that at least one of the n reaches target

as the user, you can pick your desired P’ (e.g., 99%)
then, given a P’, solving n yields

n

n

racing reads

25

0

50

100

150

200

1 2 3 4 5 6

la
te

nc
y

(m
s)

concurrent (racing) reads

p25 p50 p90 p99

request size (MiB) #requests
1 20480
4 94720
8 57600

latency distribution for racing 1MiB reads to S3.
pN represents the Nth percentile:
N% of the requests completed within this time. requests needed to download 10GiB from S3,

where each request finishes in 150ms with 99%
probability.

26

results – when does it make sense to cache?

0

0.02

0.04

0.06

0.08

0.1

0 50000 100000 150000 200000 250000

co
st

 ($
)

requests per hour

separate EBS separate NVMe
on-node EBS on-node NVMe
S3

0

0.02

0.04

0.06

0.08

0 2 4 6

co
st

 ($
)

repeated 1 GiB reads per hour

100ms latency
per 1MiB access

S3 EBS NVMe

0

0.001

0.002

0 2 4 6

1s latency
per 1 MiB access

latency insensitive latency sensitive

(with 1MiB accesses & 95% cache hits)

99%
target

with cheapest option
7 requests per sec for an object

with most sensitive case
2 requests per hour for an object

(100% cache hits)

	Slide Number 1
	Slide Number 2
	spoilers – caching is beneficial in the cloud …
	Slide Number 4
	Slide Number 5
	Slide Number 6
	what changes for the cloud?
	what changes for the cloud? – storage hierarchy
	what changes for the cloud? – costs
	what changes for the cloud? – network
	5-min rule in the cloud – for cloud analytics
	the model – latency-insensitive cases
	the model – latency-insensitive cases
	the model – latency-sensitive cases
	preliminary evaluation
	results – when does it make sense to cache?
	summary
	backup
	going forward …
	what changes for the cloud?
	what changes for the cloud? – cost
	conventional 5-min rule
	Slide Number 23
	calculating required repeated reads
	racing reads
	results – when does it make sense to cache?
	cloud storage hierarchy across vendors
	cloud (vs on-prem) – caching perspective

