Januar y 20, 2025 CIDR 2025

the 5-minute rule for the cloud:
caching in analytics systems

Kira Duwe, Angelos Anadiotis, Andrew Lamb,
Lucas Lersch, Boaz Leskes, Daniel Ritter, Pinar Tozuin

—P=l @ influxdata’ MotherDuck
ORACLE  38Ws SAP4



Robust Query Processing in the Cloud
~ Dagstuhl Seminar 24101

when do we need caches
in the cloud?

can we eliminate them?

|©SCHLOSS DAGSTUHL - LZI GMBH. o A
licensed under Creative Commons License CC BY-NC-NDEST & &




spoilers — caching is beneficial in the cloud ...

if an object needs to be accessed
=>» 7 times per second in a latency-insensitive workload

= 2 times per hour in a latency-sensitive workload

if you care about latency in disaggregated architectures,
you are going to need an object store cache!



THE 5 MINUTE RULE FOR TRADING MEMORY FOR DISC ACCESSES

and

THE 10 BYTE RULE FOR TRADING MEMORY FOR CPU TIME

Jim Gray

Franco Putzolu

Tandem Computers, Cupertino, CA,

ABSTRACT: If an
frequently enough,
memory resident.
"frequently enough"
five minutes.

1tem 1S accessed
1t should be main
For current technology,
means about every

Along a similar vein, one can frequently
trade memory space for cpu time. For
example, bits can be packed i1n a byte at
the expense of extra ainstructions to
extract the bats. It makes economic
sense to spend ten bytes of main memory
to save one 1nstruction per second.

depend on current praice
memory and disc

These results
ratios of processors,

accesses These ratios are changing and
hence the constants 1i1n the rules are
changing.

Uusa

The derivation of the five minute rule
goes as follows: A disc, and half a
controller comfortably deliver 15 random
accesses per second and are priced at
about 15K$ [Tandem] So the price per disc
access per second 1s about 1K$/a/s. The
extra CPU and channel cost for supporting
a disc 1s 1K$/a/s. So one disc access per
second costs about 2K$/a/s.

about

A megabyte of main memory costs

5KS$, so a kilobyte costs 55%.

1f making a 1Kb data record
resident saves la/s, then 1t
2KS worth of disc accesses at
5$, a good deal. If 1t saves .la/s then
1t saves about 200§, still a good deal.
Continuing this, the break-even point 1s

main-memory
saves about
a cost of

when does it make economic sense to cache disk pages in

DRAM? = if they are reused at least every 5mins.

1987



The five-minute rule ten years later, and other computer storage rules of thumb

Authors: @ Jim Gray, Goetz Graefe Authors Info & Claims

ACM SIGMOD Record, Volume 26, Issue 4 » Pages 63 - 68 « https://doi.org/10.1145/271074.271094

Published: 01 December 1997 Publication History, M) Check for updates

The Five-Minute Rule 20 Years Later: and How Flash Memory Changes the Rules:
The old rule continues to evolve, while flash memory adds two new rules.

Author: Goetz Graefe Authors Info & Claims

Queue, Volume 6, Issue 4 « Pages 40 - 52 « https://doi.org/10.1145/1413254.1413264

Published: 01 July 2008 Publication History M) Check for updates

The five-minute rule 30 years later and its impact on the storage hierarchy

Authors: Raja Appuswamy, Goetz Graefe, g Renata Borovica-Gajic, Anastasia Ailamaki Authors Info & Claims

Communications of the ACM, Volume 62, Issue 11 ¢ Pages 114 - 120 « https://doi.org/10.1145/3318163

Published: 24 October 2019 Publication History, M) Check for updates




DO01:10.1145/3318163

Tracing the evolution of the five-minute rule
to help identify imminent changes
in the design of data management engines.

BY RAJA APPUSWAMY, GOETZ GRAEFE,
RENATA BOROVICA-GAJIC, AND ANASTASIA AILAMAKI

The Five-
Minute Rule
30 Years Later
and Its Impact
on the Storage
Hierarchy

Finally, with widespread adoption
of cloud computing, the modern enter-
prise storage hierarchy not only spans
several storage devices, but also differ-
ent geographic locations from direct-
attached low-latency devices, through
network-attached storage servers, to
cloud-hosted storage services. The
price-performance characteristics of
these storage configurations vary dra-
matically depending not only on the
storage media used, but also on other
factors like the total capacity of data
stored, the frequency and granular-
ity of I/O operations used to access the
data, the read-write ratio, the duration
of data storage, and the cloud service
provider used, to name a few. Given the
multitude of factors, determining the
break-even interval for cloud storage is
blicated problem that we did not
consider in this work. Thus, another
interesting avenue of future work is ex-
tending the five-minute rule to such a
distributed cloud storage setting.




what changes for the cloud?



what changes for the cloud? — storage hierarchy

conventional 5-min rule cloud
compute 1 compute 2
emory | emory
el L

usec NVMe SSD remote memory SSD, block storage (EBS, managed disks ...)
caching layer
msec hard disk

object store
(S3, blob store ...)

 compute & storage disaggregation
* object store has the ground-truth for data



what changes for the cloud? — costs

conventional 5-min rule cloud
compute 1 compute 2
emory | emory
el L

D, EB
usec NVMe SSD remote memory SSD, block storage (EBS, managed disks ...)
caching layer
msec hard disk

object store
(S3, blob store ...)

 compute instances
- data storage
« object store accesses

storage devices



what changes for the cloud? — network
AWS EC2 instances

21 o

18 & i3 (Nov'16)

15 N 0 0 O i3en (May'19)
© d3 (Dec'20)

A im4gn (Nov'21

o
|
o

local read bandwidth (GB/s)
N

6 @ is4gen (Nov'21)
3 A o i4i (Apr'22)
0 5 m idg (May'23)

0 3 6 9 12

network bandwidth / read bandwidth from S3 (GB/s)

some compute instances have higher bandwidth than local
storage, but this doesn’t guarantee stable or low latency! .



5-min rule in the cloud — for cloud analytics

Given a latency target,
how often must an application access
an object to justify caching instead of
directly fetching from object storage?



the model — latency-insensitive cases

cost of not caching
s cost per object store request 3 (number of requests mm 1)

cost of caching
= (hourly storage cost per GB o hourly instance cost per GB)
8 cache size in GB
R lifetime of cache in hours
s cache miss rate number of requests ¢ cost per object store request



the model — latency-insensitive cases

cost of not caching
s cost per object store request 3 (number of requests mm 1)

cost of caching — separate cache instances
== (hourly storage cost per GB o hourly instance cost per GB)
® cache size in GB
R lifetime of cache in hours
s cache miss rate $number of requests ¢ cost per object store request

cost of caching — same instance
=m COSt of caching at separate instance sm instance cost without cache



the model — latency-sensitive cases

racing reads to reach the latency target

=» concurrent requests for the object

=>» proceed with the first response,
ignore the rest

cost of not caching
= COSt per object store request
® (humber of requests — 1)
¢ concurrent reads to

200
guarantee latency

1MiB reads to S3

[EEY
U
o

only term that
requires measurement!

target latency

99% latency (ms)
=
o o

cost of caching
=» same as previous

o

1 2 3 4 5 @
concurrent (racing) reads

14



preliminary evaluation

on AWS m7 instances
with ARM Graviton processors

S3 cost per request

0.00000045S

EBS monthly storage cost per GB

0.08S

hourly on-demand compute instance costs

m7g with EBS

0.04085

m7gf with 59GiB NVMe SSD

0.05345$

object store access latency values

Exploiting Cloud Object Storage for High-Performance Analytics

Authors: Dominik Durner, Viktor Leis, Thomas Neumann Authors Info & Claims

Proceedings of the VLDB Endowment, Volume 16, Issue 11  Pages 2769 - 2782 e https://doi.org/10.14778/3611479.3611486

Published: 01 July 2023 Publication History, M) Check for updates




results — when does it make sense to cache?

latency insensitive latency sensitive
separate EBS separate NVMe 99% target = 100ms latency per 1MiB access
—on-node EBS — =-on-node NVMe
——S3
0.1 =3 0.08 -
—EBS
0.08 - — 0.06 -
a (100% cache hits) < NVMe
)
= 0.06 % 0.04 -
(s} @ . .
S 0.04 002 - (with 1MiB accesses
. & 95% cache hits)
002 7= 4= --=----""" 0 rarESL
0 0 2 4 6

0 50000 100000 150000 200000 250000 .
# repeated 1 GiB reads per hour

# requests per hour

even with cheapest option = 2 requests per hour for an object
7 requests per sec for an object is enough to justify caching

16



summary

need a separate framework to reason about caching in the cloud
* storage hierarchy relies on object stores
e cost of storage access isn’t 0 after deployment
* hence, the 5-min rule needs revisiting
thank you!

preliminary evaluation shows that
* for latency-insensitive cases, you can live without a cache

« considering the cost of maintaining caches
* for latency-sensitive cases, you need an object store cache



backup



going forward ...

evaluation of other vendors
* .. given aCccess atency measurements

cases that need larger cloud instances
e e.g., toget more vCPUs — necessary for throughput

* you get the storage space on the side, which you can use for
caching — does it make caching less costly, overall?

separate considerations for meta-data and data
 or do we assume that meta-data will likely be cached, regardless?
modeling advanced caching

* involving data transformations / push-down on the way

transaction processing - impact of updates



conventional 5-min rule

Metric DRAM HDD NVMe SSD

1987 1997 2007 2018 2024 1987 1997 2007 2018 2024 2018 2024
Unit price ($) 5k 15k 43 80 42 30k 2k 80 49 343 589 180
Unit capacity IMB 1GB 1GB 16GB 32GB | 180MB 9GB 250GB 2TB 20TB 800GB 2TB
$/MB 5k 146  0.05 0.005 0.0014 | 83.33 0.22  0.0003 0.00002 0.00001 0.0007  0.00009
Random IOPS (r/w) | — - - - - 5 64 83 200 168 / 550 | 460 k 1,400k/1,550k
Seq bandwidth

- - - - - | ‘ 450/6,9
(MB/s) (r/w) 1 10 300 200 285 2500 7,450/6,900

L. -1 :
1000 kB X (page size in kB) $ per Disk

X
read IOPS $ per MB of DRAM

22



Compute 1 Compute 2 Compute 3
DB DB DB
Mem Cache  Memory Mem Cache  Memory Mem Cache | Memory
L—) Object Store <—J

(a) Compute local (mem): Separate in-memory cache on each
compute node.

Compute 1 Compute 2 Compute 3
DB DB DB
8 Mem Cache = Memory Mem Cache  Memory 9 Mem Cache | Memory
ATTA S— l P—
Object Store

(c) Shared nothing: Shared cache collaboratively managed and accessed

by compute nodes.

Compute 2
DB

B Mem Cache  Memory

i

Object Store

Compute 3
OB

8 Mem Cache  Memory 8 Mem Cache | Memory

_— o

(b) Compute local: Separate local storage and memory-based cache on

Compute 1
DB

each compute node.

Compute 2 Compute 3

Compute 1

.............................................................................................

Mem Cache Mem Cache

L -

(d) Cache Service: Cache is managed by a separate set of nodes.

Object Store

Design Latency Implementation Operational Object Store Cache Capacity
Variability Complexity Complexity Request Count Elasticity

No cache TTTTT None None TTTTT None

Compute local (memory only) T717 T None ™11 T

17 T

Compute local

T 1T T

Shared nothing

T 7

T T T

T T

Cache Service

23

TTTT T TTTTT



calculating required repeated reads

knowing the latency distribution of requests to read an object of a certain
size from the object store, we know

* P - probability of reading an object within the target latency

if there are n independent requests for this object
n
°* (1-P) —> probably of all of them taking longer than target latency
n .
* P’=1-(1-P) - probability that at least one of the n reaches target

as the user, you can pick your desired P’ (e.g., 99%)
then, given a P’, solving n yields

n = RepeatsToGuaranteeLatency = log—py(1— P")



racing reads

latency distribution for racing 1MiB reads to S3.
pN represents the Nth percentile:

N% of the requests completed within this time. requests needed to download 10GiB from S3,

where each request finishes in 150ms with 99%

=p25 —=+p50 -=p90 -—-p99 probability.

200
— \ request size (MiB) | #requests
c 150
= 1 20480
9 T~
c 100 E— — 4 94720
5 : — 8 57600

O I I I I I T ]

1 2 3 4 5 6
concurrent (racing) reads



results — when does it make sense to cache?

latency insensitive

separate EBS

—o0n-node EBS
-0-S3

separate NVMe
- =on-node NVMe

(100% cache hits)

0 50000 100000 150000 200000 250000

# requests per hour

with cheapest option =
7 requests per sec for an object

latency sensitive

——S3 —EBS NVMe
(0]
99%  100ms latency 1s latency
target per 1MiB access

per 1 MiB access

0.08 1 0.002 -
— 0-06 n
v
1
3 0.04 0.001 -
(@)
0.02 - 7 —
0 [ [ ] 0 I [ ]
0 2 4 6 0 2 4 6

# repeated 1 GiB reads per hour
(with 1MiB accesses & 95% cache hits)

with most sensitive case =
2 requests per hour for an object



	Slide Number 1
	Slide Number 2
	spoilers – caching is beneficial in the cloud … 
	Slide Number 4
	Slide Number 5
	Slide Number 6
	what changes for the cloud?
	what changes for the cloud? – storage hierarchy
	what changes for the cloud? – costs
	what changes for the cloud? – network 
	5-min rule in the cloud – for cloud analytics
	the model – latency-insensitive cases
	the model – latency-insensitive cases
	the model – latency-sensitive cases
	preliminary evaluation
	results – when does it make sense to cache?
	summary
	backup
	going forward …
	what changes for the cloud?
	what changes for the cloud? – cost 
	conventional 5-min rule
	Slide Number 23
	calculating required repeated reads 
	racing reads
	results – when does it make sense to cache?
	cloud storage hierarchy across vendors 
	cloud (vs on-prem) – caching perspective



