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how did i get into machine learning?
me

Could you supervise our MSc thesis? 

What would you like to work on? 

Automatic speech recognition

Why are you talking to me?

We want to make it scalable

ok then

sebastian
baunsgaard

sebastian
benjamin 
wrede
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• training speech recognition on co-processors

• studying workload co-location

• challenges & opportunities 
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agenda
[ADMS2020]

https://arxiv.org/abs/2003.12366
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speech recognition

• human-computer & human-human interactions
• hospitals, call-centers, etc.

Feature
Extraction

Acoustic
Model

speech text

state-of-the-art acoustic models are based on neural 
networks in recent years  natural fit for GPUs
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speech recognition

Feature
Extraction

Acoustic
Model

speech text

state-of-the-art acoustic models are based on neural 
networks in recent years  natural fit for GPUs

takes a
few hours

takes
several days
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acoustic model

input
features CNN 5x 

LSTM FFNN character 
probabilities

input
features

1x-3x
CNN

1-7x 
LSTM FFNN character 

probabilities

• inspired by Baidu Research, Deep Speech 2, ICML 2016
• basis for MLPerf’s speech recognition benchmark as well

process of determining the right set of layers is 
heavily based on trial-&-error

our final model

deep speech 2
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SSD

16 GB DDR4

CPU 1
4 Core
4.0 GHz

RTX 2070

RTX 2070

RTX 2070

RTX 2070

PCIe3 16x

SATA3

PCIe2 1x

motherboard = repurposed
cheap crypto-mining rig

sebastians built rebelrig
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sys1$

SSD

16 GB DDR4

CPU 1
4 Core
4.0 GHz

RTX 2070

RTX 2070

RTX 2070

RTX 2070

PCIe3 16x

SATA3

PCIe2 1x

HDD

64 GB  
DDR3CPU 1

6 Core
2.6 GHz

QPI

SATA3Shared  
Storage

1G Ethernet 

GTX 1080TI CPU 2
6 Core
2.6 GHz

64 GB  
DDR3

PCIe3
16x

GTX 1080TI

GTX 1080TI

GTX 1080TI

sys2$
Tesla V100

Tesla V100

96 GB  
DDR4

96 GB  
DDR4

SSDShared  
Storage

CPU 2
12 Core
3.0 GHz

CPU 1
12 Core
3.0 GHz

QPI

infiniband SATA3

PCIe3
16x

sys10$

intel i7 6700k

intel xeon E5-2630 

intel xeon gold 6136



acoustic model implemented
using TensorFlow 1.14

training over three platforms

dataset : LibriSpeech
audiobooks
~1000 hours of speech

(both clean & noisy)
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experimental setup

every 250th

iterationGenerating
Sentences

Saving
Checkpoint

Training

Swapping
Model Evaluating

done
generating

every 50th

iteration

training
model

created

every
epoch

evaluation
model created

done evaluating
reports accuracy
achieved so far

done
saving

start
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results

no huge difference in
accuracy across platforms
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high throughput !=
faster time-to-accuracy
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impact of batch size

larger batch size increases hardware utilization,
but may not help with time-to-accuracy
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word error rate comparison
platforms test data

clean noisy
sys1$ 17.32 45.04
sys2$ 18.68 48.15
sys10$ 19.45 49.43

after 2 days 8 hours

deep speech 2 5.15 12.73
their paper says, this requires 3-6 weeks to execute on a single GPU

published results in this domain can be very vague 
when it comes to time-to-accuracy



lessons learned
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• very powerful co-processors more and more widely 
available for machine learning

• but takes a lot to exploit, no free lunch as usual

• need to invest further in improving ML libraries or 
resource managers for ML on heterogeneous hardware

• on the other hand, low-budget platforms may be good 
enough for your needs

same old challenge, different workload & hardware



• training speech recognition on co-processors

• studying workload co-location

• challenges & opportunities 
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how to better utilize things?

CPU
GPU

CPU

GPU

GPUGPU

training 1 on server 1

static resource allocation
for the whole for simplicity

dynamic & fine-grained view

generating
words

saving
checkpoint

training

swapping
model

evaluating

conventional wisdom resource-aware learning

strict separation of training 
tasks due to fear of interference

training 2 on server2&3CPU
GPU

CPU

GPU

GPUGPU

CPU
GPU

CPU

GPU

GPUGPU
collaborative

work & resource sharing

CPU
GPU

CPU

GPU

GPUGPU

CPU
GPU

CPU

GPU

GPUGPU
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opportunity for fine-grained co-location
figure from NVIDIA DGX Station A100
System Architecture Technical White Paper

CPU = AMD 7742 – 512 GB RAM
64 physical cores
GPU = NVIDIA A100 – 40 GB RAM
allows multi-instance GPU (MIG)

MSc thesis work of
Stilyan Petrov Paleykov
& Anders Friis Kaas

small use case;
training ResNet50 on CIFAR-10 dataset

tools: dcgmi, nvidia-smi, top [, nsight]

initial step: get familiar with MIG 
& resource monitoring on DGX
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impact of multi-instance GPU
354
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processing mode

• same results with
half of the GPU resources

• potential to batch/co-locate training 
runs with slight latency increase



challenges & opportunities

20

challenges
• workloads
• experimental duration
• state-of-the-art models changing fast
• measuring computational footprint with many parameters to set 
• profiling & co-location granularity 

opportunities
• devices that allow finer-grained scheduling & space management
• diversity of applications, hardware, & end-users

ongoing: workload characterization on different platforms

thank you!
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team RAD

Robert
Bayer

Lottie
Greenwood

Jon Voigt
Tøttrup

Ties
Robroek

Ehsan
Yousefzadeh-
Asl-Miandoab

edge devicesservers with
CPU-GPU

co-processors

IT system
admin

https://itu-dasyalab.github.io/RAD/

https://itu-dasyalab.github.io/RAD/
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