

RAD

www.dasya.dk @dasyaITU https://daphne-eu.github.io/

https://rad.itu.dk

<u>www.itu.dk</u>

Sustainable Use of Hardware for Deep Learning – A case for Collocation

Pınar Tözün

Associate Professor

Computer Science Department

Data-Intensive Systems & Applications (DASYA) Lab

pito@itu.dk, www.pinartozun.com, @pinartozun

27/09/2022

hardware-conscious data(-intensive) systems

hardware:

. . .

processors (e.g., CPU, GPU), storage (e.g., hard disk, SSD), network (e.g., router) Or PyTorch TensorFlow

are data systems that utilize modern hardware well.

data systems:

machine learning frameworks,

database management systems,

big data systems

why is it important to utilize hardware well for sustainability? what does it mean to utilize hardware well?

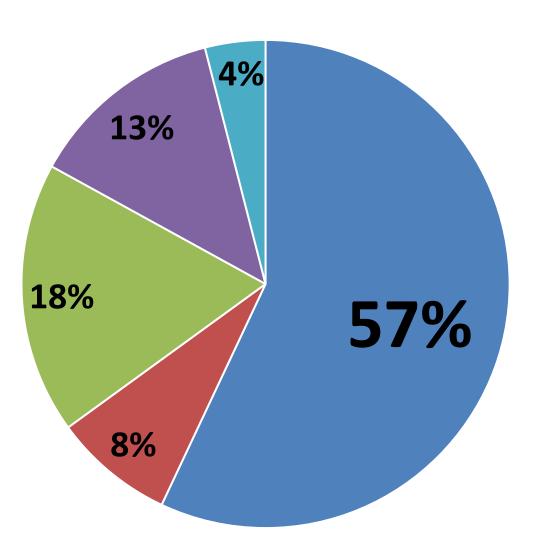
agenda

- why is it important to utilize hardware well?
- are we utilizing hardware well?
- can we utilize hardware better?

hardware focus: co-processors

IT UNIVERSITY OF COPENHAGEN

monthly costs (\$\$) of a data center



source: James Hamilton, 2010

view on monetary costs, not power consumption. but they are related.

servers

- networking equipment
- power distribution & cooling

power

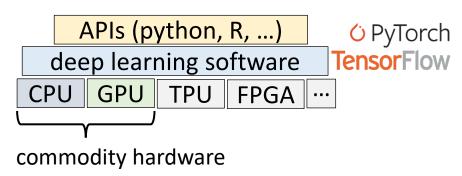
other

bad utilization of *servers* is a waste of both power & money

unsustainable growth of deep learning

2012 present

- powerful hardware
- larger datasets
- deep learning frameworks



300000x increase in computational need

for deep learning models.

- computational efficiency is ignored
- → main performance metric = *accuracy*
- high computation (carbon) footprint
- → ... with low transparency
- throw new & expensive hardware at the problem?
- ➔ no, there is no free lunch

• why is it important to utilize hardware well?

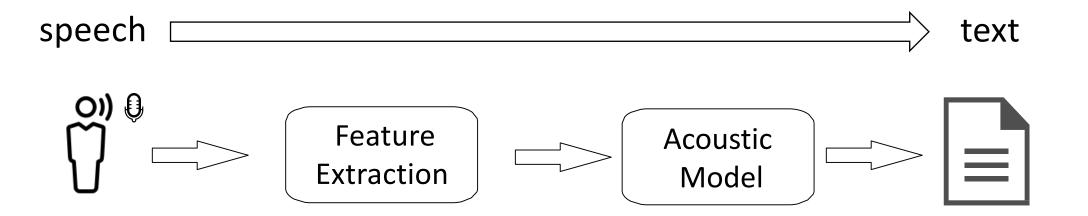
- are we utilizing hardware well?
 - use case: speech recognition on CPU-GPU co-processors

• can we utilize hardware better?

sebastian benjamin wrede

sebastian baunsgaard

speech recognition



- human-computer & human-human interactions
- hospitals, call-centers, virtual assistants, etc.

state-of-the-art *acoustic models* are based on neural networks in recent years → natural fit for GPUs

acoustic model

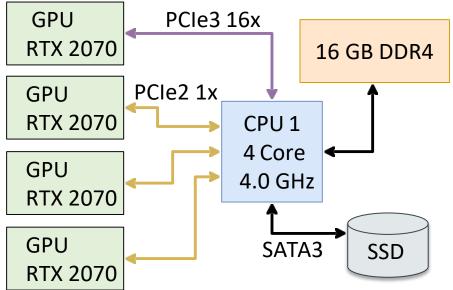
input features
$$\longrightarrow$$
 CNN $\begin{bmatrix} 5x \\ LSTM \end{bmatrix}$ FFNN \longrightarrow character probabilities

- inspired by Baidu Research, Deep Speech 2, ICML 2016
- basis for MLPerf's speech recognition benchmark as well

input features
$$\rightarrow$$
 $1x-3x$ $1x-7x$ $FFNN$ \rightarrow character probabilities deep speech 2

process of determining the right set of layers is heavily based on trial-&-error

first, let's introduce *rebelrig* = co-processor built in-house

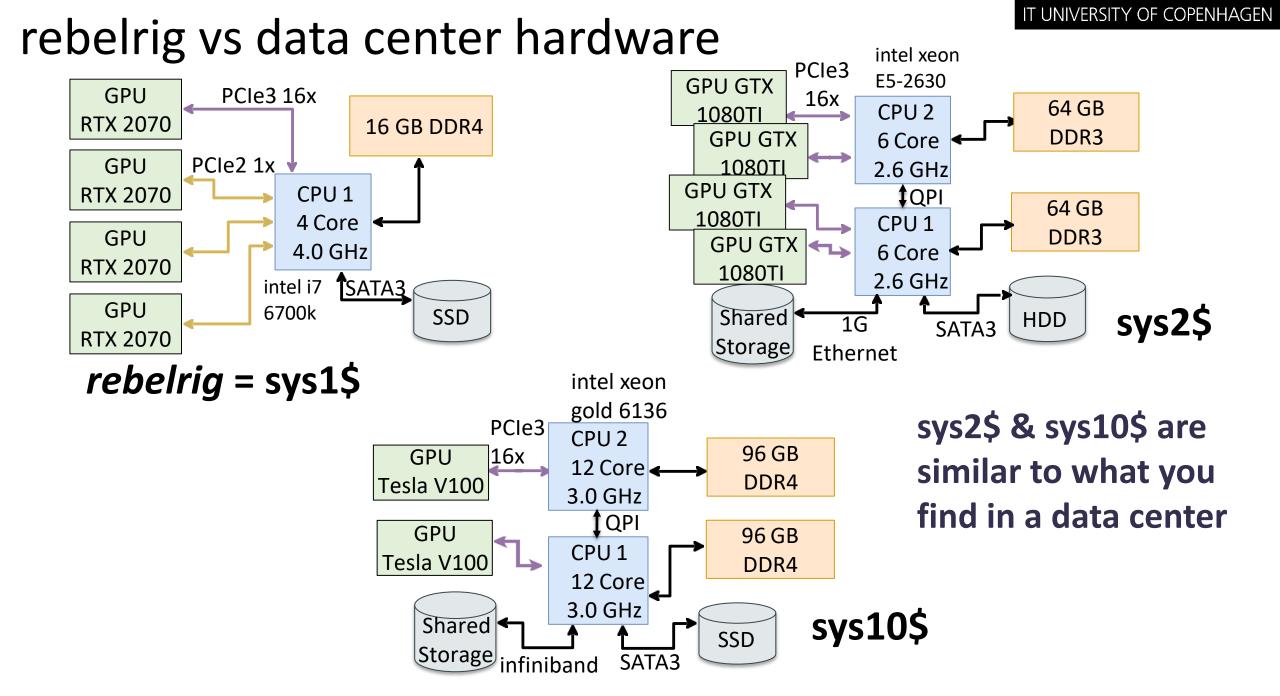


motherboard = repurposed cheap crypto-mining rig

data center

not something you find in a

in DASYA lab, we try our best to repurpose old hardware rather than thrashing them

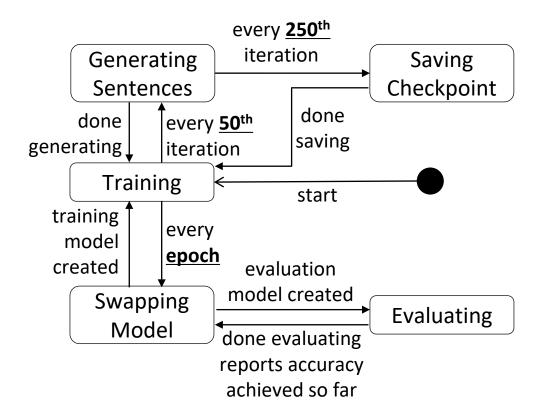


experimental setup

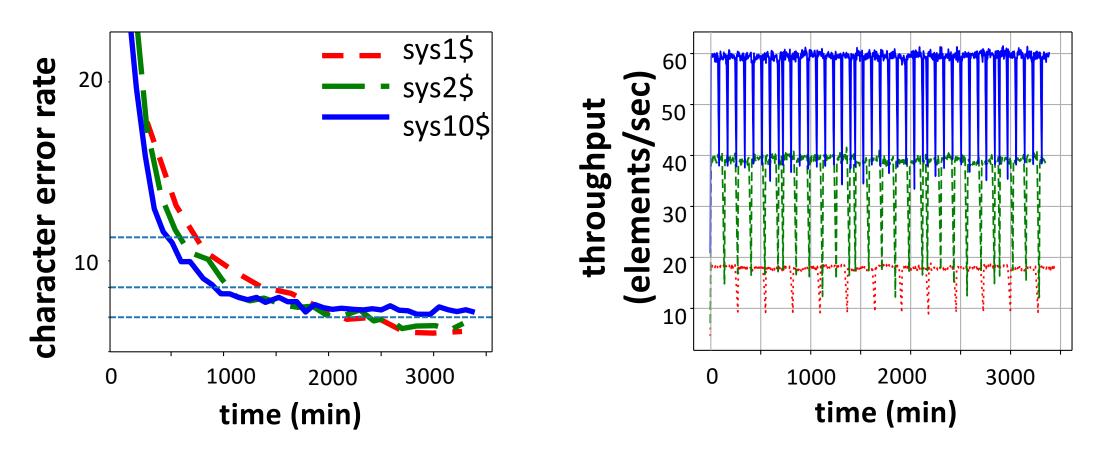
• acoustic model implemented using TensorFlow 1.14

 training over three hardware platforms

- dataset : LibriSpeech
 - audiobooks
 - ~1000 hours of speech (both clean & noisy)



price/performance results



no huge difference in accuracy across platforms

high throughput != faster time-to-accuracy

lessons learned

- very powerful co-processors more and more widely available for machine learning / deep learning
- but takes a lot to exploit, no free lunch as usual
- need to invest further in improving machine learning libraries and hardware resource managers
- on the other hand, low-budget platforms may be good enough for your needs

same old challenge for data-intensive systems, different workload & hardware

agenda

• why is it important to utilize hardware well?

• are we utilizing hardware well?

- can we utilize hardware better?
 - our direction: workload collocation

workload collocation

multiple workloads sharing hardware resources

benefits when a single workload cannot utilize available resources

main high-level challenge = interference across workloads

workload collocation on (NVIDIA) GPUs

• vanilla co-location

• kernels of different workloads are time-multiplexed (not concurrent)

• virtualization

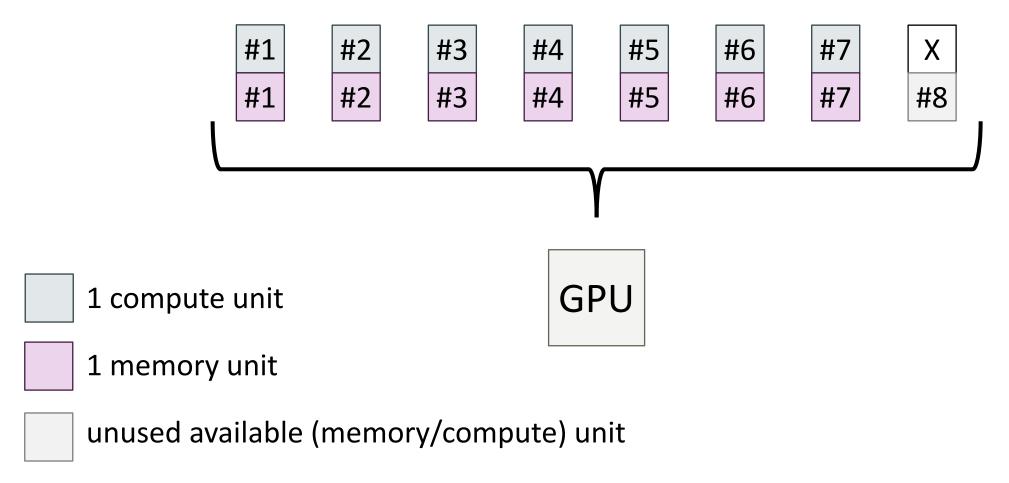
• practical, but also based on time-sharing

• multi-process service (MPS)

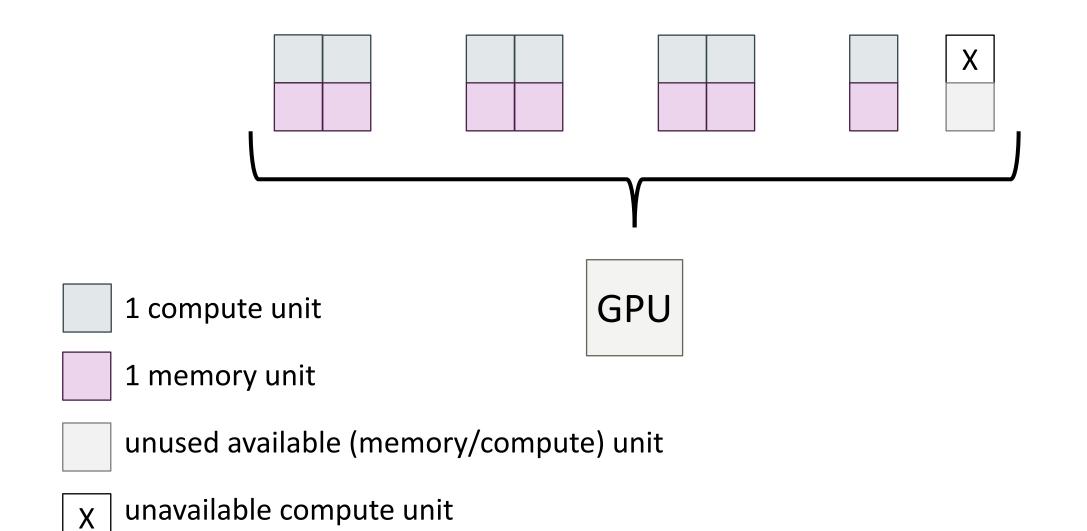
- GPU resources are split (auto-magically) across collocated workloads
- kernels of different applications can run simultaneously
- allowed for one user (for safety reasons)

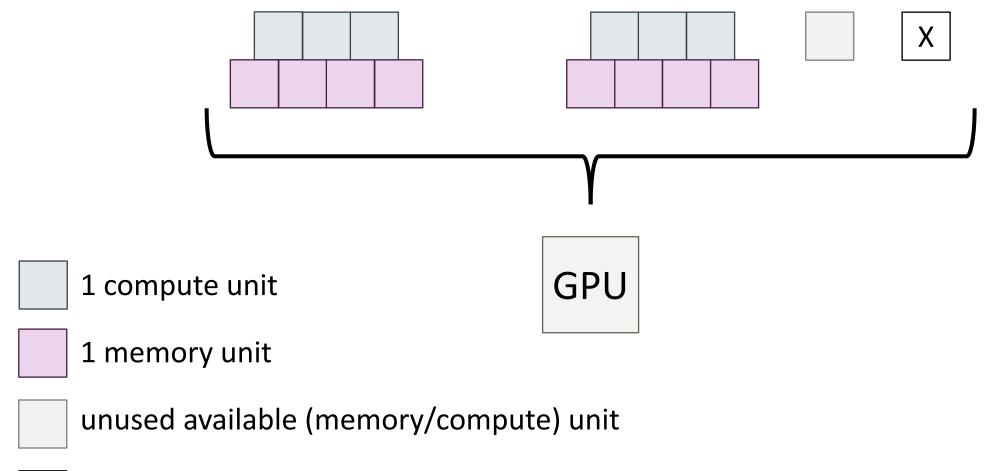
• multi-instance GPU (MIG)

- hardware support for resource split, introduced with NVIDIA A100
- can do all of the above in a MIG partition

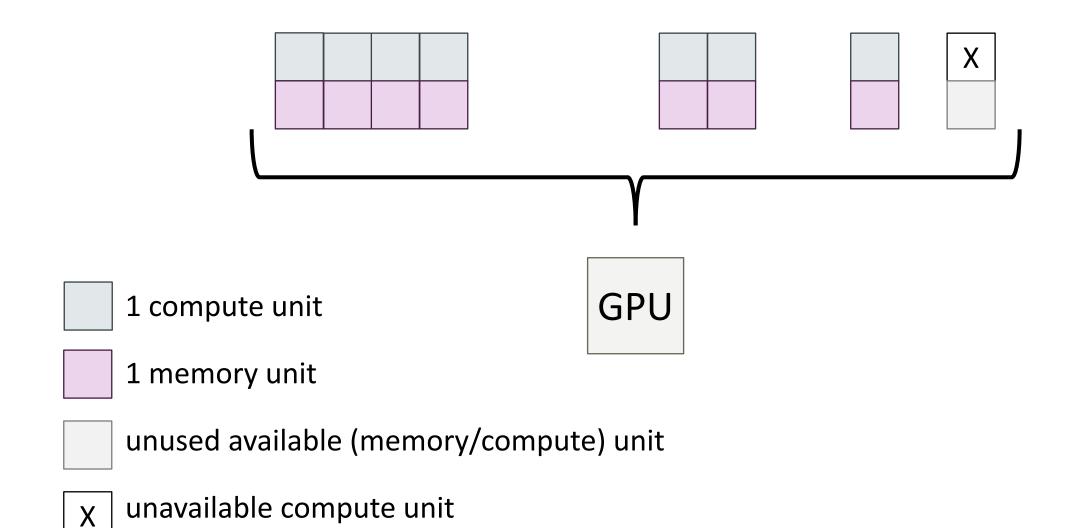


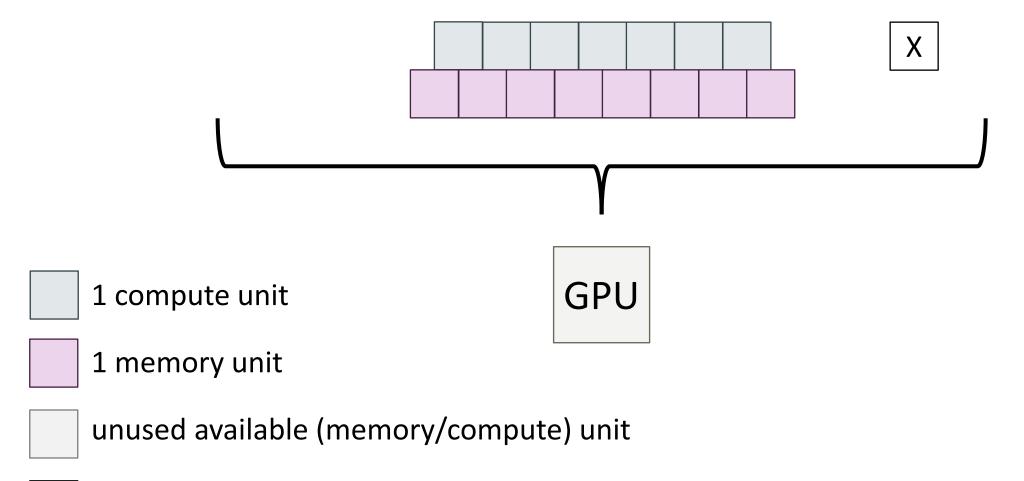
X unavailable compute unit



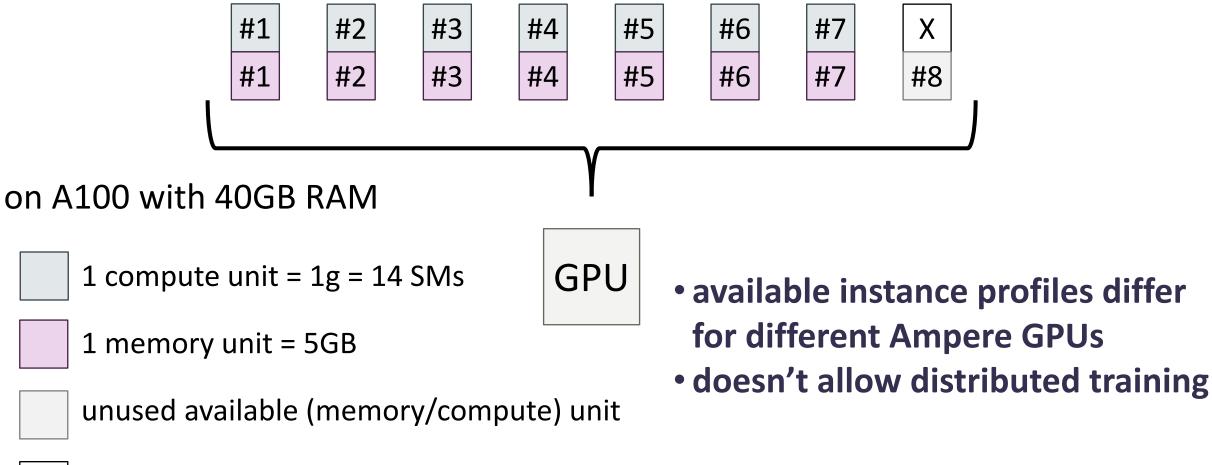


X unavailable compute unit





X unavailable compute unit

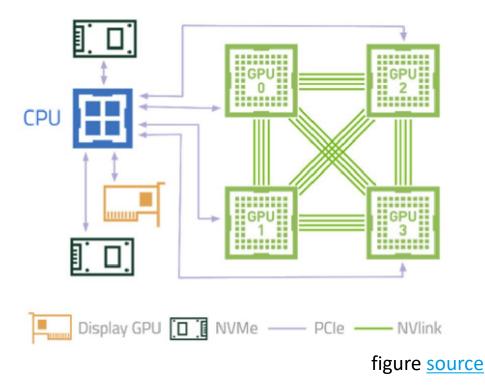


X | unavailable compute unit = less than 14 SMs (SM = streaming multiprocessor)

IT UNIVERSITY OF COPENHAGEN

performance impact of MIG-based co-location

NVIDIA DGX Station A100



CPU = AMD 7742 – 512 GB RAM 64 physical cores GPU = NVIDIA A100 – 40 GB RAM allows *multi-instance GPU (MIG)*

TensorFlow^{2.7}

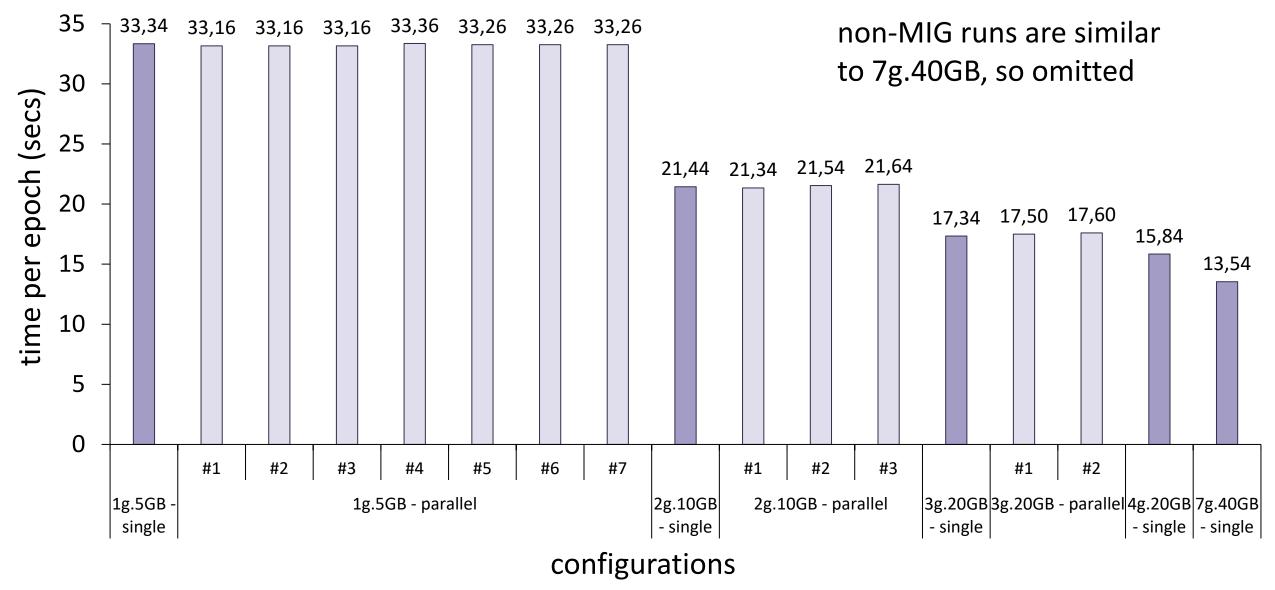
workloads	model	dataset
small	ResNet26	CIFAR-10
medium	ResNet50	downsampled ImageNet <u>*</u>
large	ResNet152	ImageNet (2012)

batch size = 32 for all runs on single GPU

- 25 epochs for small
- 5 epochs for medium & large

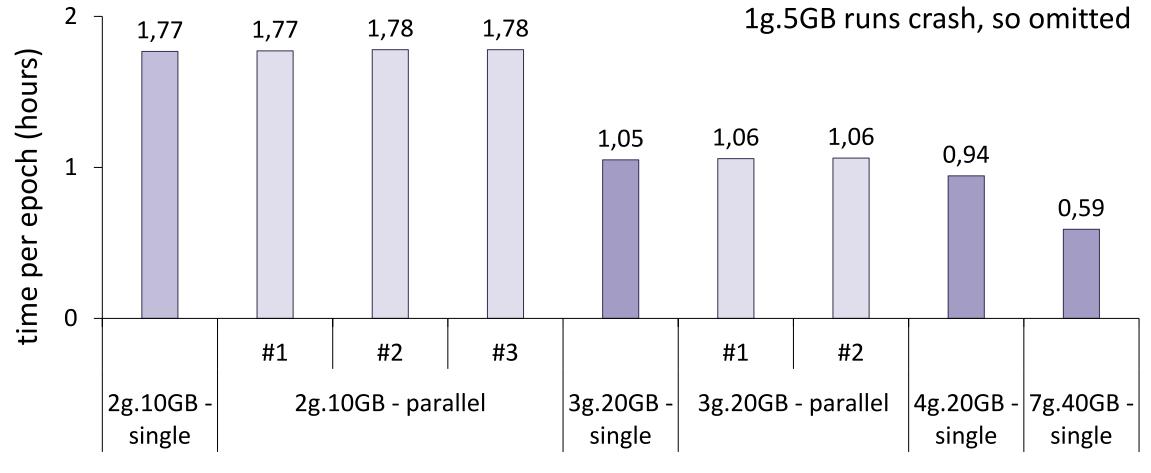
MSc thesis work of Stilyan Petrov Paleykov & Anders Friis Kaas

time per epoch – small case



opportunity to collocate training runs with slight latency increase

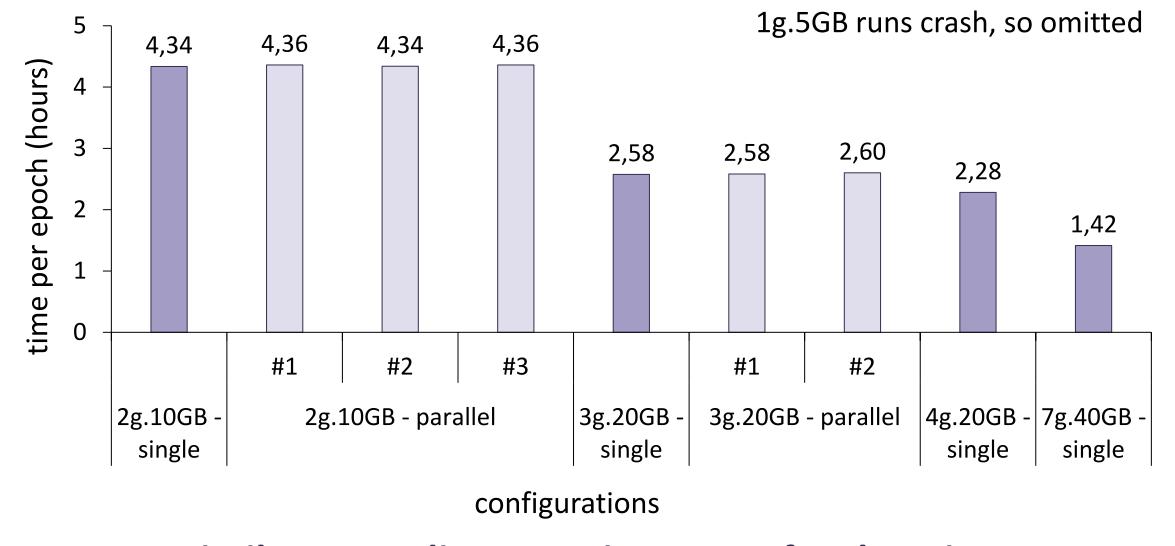
time per epoch – medium case



configurations

1g.5gb case isn't feasible anymore due to insufficient memory, not much gain from collocation

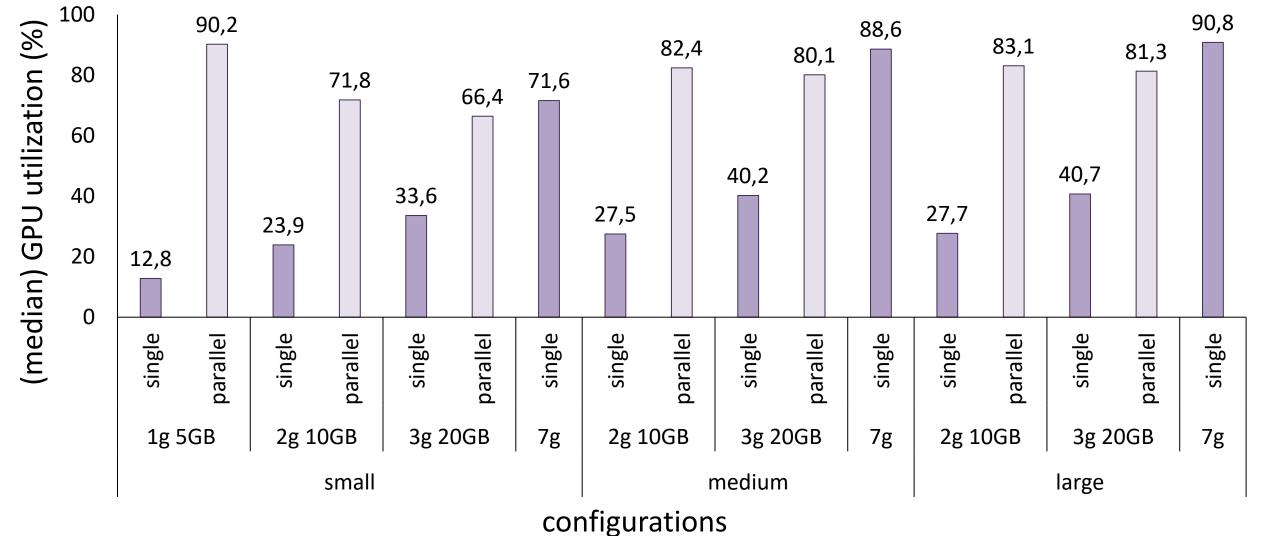
time per epoch – large case



similar to medium case in terms of co-location overall, parallel runs don't interfere as long as there is enough memory

IT UNIVERSITY OF COPENHAGEN

GPU utilization



fine-grained parallel runs increase utilization for *small case medium & large* cases utilize the whole GPU well without parallel runs

challenges & opportunities

- hardware is a resource, must use it well
- many data-intensive systems (e.g., deep learning frameworks) do not use modern hardware well out-of-the-box

opportunities

- GPUs that allow finer-grained scheduling & space management
- diversity of applications, hardware, & end-users

Creates opportunity for effective resource sharing on GPUs challenges

- representative workloads
- experimental duration
- profiling & collocation granularity

thank you!