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sources: https://openai.com/blog/ai-and-compute/, Strubell et al. ACL 2019, Schwartz et al. GreenAI 2019

300000x increase in 
computational need
for deep learning models.

deep learning software
FPGA …CPU GPU TPU

APIs (python, R, …)

commodity hardware

• computational efficiency is ignored
main performance metric = accuracy

• high computation (carbon) footprint
 … with low transparency

• throw new & expensive hardware at 
the problem?

 no, there is no free lunch

2012 present

• powerful hardware
• larger datasets
• deep learning frameworks

unsustainable growth of deep learning

https://openai.com/blog/ai-and-compute/
https://www.aclweb.org/anthology/P19-1355/
https://medium.com/ai2-blog/green-ai-db24a414a7a4
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• training speech recognition on co-processors

• studying workload co-location

• challenges & opportunities 

[ADMS2020]

agenda

https://arxiv.org/abs/2003.12366


• human-computer & human-human interactions
• hospitals, call-centers, virtual assistants, etc.

Feature
Extraction

Acoustic
Model

speech text

state-of-the-art acoustic models are based on neural 
networks in recent years  natural fit for GPUs

speech recognition



input features CNN 5x 
LSTM FFNN character probabilities

• inspired by Baidu Research, Deep Speech 2, ICML 2016
• basis for MLPerf’s speech recognition benchmark as well

process of determining the right set of layers is 
heavily based on trial-&-error

our final model

deep speech 2
input features 1x-3x

CNN
1x-7x 
LSTM FFNN character probabilities

acoustic model
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motherboard = repurposed
cheap crypto-mining rig

sebastians built rebelrig
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• acoustic model implemented
using TensorFlow 1.14

• training over
three hardware platforms

• dataset : LibriSpeech
• audiobooks
• ~1000 hours of speech (both clean & noisy)

experimental setup

every 250th

iterationGenerating
Sentences

Saving
Checkpoint

Training

Swapping
Model Evaluating

done
generating

every 50th

iteration

training
model

created

every
epoch

evaluation
model created

done evaluating
reports accuracy
achieved so far

done
saving

start



no huge difference in
accuracy across platforms
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high throughput !=
faster time-to-accuracy

price/performance results



12

larger batch size increases hardware utilization,
but may not help with time-to-accuracy
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• very powerful co-processors more and more widely available 
for machine learning / deep learning

• but takes a lot to exploit, no free lunch as usual
• need to invest further in improving machine learning libraries 

and hardware resource managers
• on the other hand, low-budget platforms may be good enough 

for your needs

same old challenge for data-intensive systems,
different workload & hardware

lessons learned



• training speech recognition on co-processors

• studying workload co-location

• challenges & opportunities 
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multiple workloads sharing hardware resources 

benefits when a single workload cannot utilize available resources

main high-level challenge = interference across workloads

workload co-location



• vanilla co-location
• kernels of different workloads are time-multiplexed (not concurrent)

• virtualization
• practical, but also based on time-sharing

• multi-process service (MPS)
• GPU resources are split (auto-magically) across co-located workloads
• kernels of different applications can run simultaneously
• allowed for one user (for safety reasons)

• multi-instance GPU (MIG)
• hardware support for resource split, introduced with NVIDIA A100
• can do all of the above in a MIG partition

workload co-location on (NVIDIA) GPUs



multi-instance GPU 

GPU

#1 #2 #3 #4 #5 #6 #7
#1 #2 #3 #4 #5 #6 #7

X
#8

1 compute unit

1 memory unit

unused available (memory/compute) unit

unavailable compute unitX
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multi-instance GPU 

#1 #2 #3 #4 #5 #6 #7
#1 #2 #3 #4 #5 #6 #7

X
#8

1 compute unit = 1g = 14 SMs

1 memory unit = 5GB

unused available (memory/compute) unit

unavailable compute unit = less than 14 SMsX

on A100 with 40GB RAM

• available instance profiles differ 
for different Ampere GPUs

• doesn’t allow distributed training

GPU



NVIDIA DGX Station A100

CPU = AMD 7742 – 512 GB RAM
64 physical cores
GPU = NVIDIA A100 – 40 GB RAM
allows multi-instance GPU (MIG)

MSc thesis work of
Stilyan Petrov Paleykov
& Anders Friis Kaas

performance impact of MIG-based co-location

workloads model dataset
small ResNet26 CIFAR-10

medium ResNet50 downsampled
ImageNet*

large ResNet152 ImageNet (2012)

2.7

batch size = 32 for all
runs on single GPU
• 25 epochs for small
• 5 epochs for medium & large

figure source

https://arxiv.org/abs/1707.08819
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-station-a100-system-architecture-white-paper.pdf


time per epoch – small case 

opportunity to co-locate training runs with slight latency increase
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time per epoch – medium case 

1g.5gb case isn’t feasible anymore due to insufficient memory,
not much gain from co-location
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time per epoch – large case 

similar to medium case in terms of co-location
overall, parallel runs don’t interfere as long as there is enough memory

1g.5GB runs crash, so omitted



GPU utilization

fine-grained parallel runs increase utilization for small case
medium & large cases utilize the whole GPU well without parallel runs
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opportunities
• GPUs that allow finer-grained scheduling & space management
• diversity of applications, hardware, & end-users
 creates opportunity for effective resource sharing on GPUs

challenges
• representative workloads
• experimental duration
• profiling & co-location granularity 

challenges & opportunities
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team RAD – resource-aware data systems
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opportunities
• GPUs that allow finer-grained scheduling & space management
• diversity of applications, hardware, & end-users
 creates opportunity for effective resource sharing on GPUs

challenges
• representative workloads
• experimental duration
• profiling & co-location granularity 

challenges & opportunities
thank you!
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