

daphne-eu.github.io/

rad.itu.dk

www.itu.dk

www.dasya.dk @dasyaITU

TPCxAI on NVIDIA Jetsons

Robert Bayer, Jon Voigt Tøttrup, Pinar Tözün IT University of Copenhagen

TPCTC 2022

roba@itu.dk, @robertbayer_

5/9/2022

ML@Edge

- Low-latency & real-time applications
- Poor / non-existing connectivity
- Legal restrictions & privacy
- Large amount of data need for smart preprocessing

TPCxAI

- Benchmark for machine learning or data science systems
- 10 use cases modeled on retail datacenter
- End-to-end
- Scaling factor

Source: TPC Express AI (TPCx-AI) Standard Specification Revision 1.0.1

Example: System on Chip devices

Common at edge Heterogeneous Memory shared between CPU and GPU

Experimental setup - hardware

Device	GPU	CPU	RAM	PWR	Price
TX2	NVIDIA Pascal, 256 CUDA Cores	NVIDIA Denver (2 Cores) & Arm Cortex A57 (4 Cores) @ 2.0 GHz	$8\mathrm{GB}$	15W	\$399
Xavier	NVIDIA Volta, 512 CUDA Cores, 64 Tensor Cores	8 Cores ARM v8.2 64-bit @ 2.2 GHz	$32\mathrm{GB}$	30W	\$699
Desktop	NVIDIA RTX 2070, 2304 CUDA Cores, 288 Tensor Cores	8 Cores Intel Core i7-6700K @ 4.0 GHz	16 GB (CPU), 8 GB (GPU)	$\sim 550 \mathrm{W}$	τ

Experimental setup - workload

- Out-of-the-box TPCxAI
- Scaling factors: 1, 3
- Modifications:
 - Offloading data generation to an x86 system
 - Fixed parameter propagation error
 - Parallelised preprocessing stage of use case 8

Experimental setup - metrics

- TPCxAI metrics
 - AIUCpm@SF primary metric, workload-to-latency ratio
 - \$/AIUCpm@SF

$$AIUCpm@SF = \frac{SF*N*60}{\sqrt[4]{T_{LD}*T_{PTT}*T_{PST}*T_{TT}}}$$

- Power consumption
 - Tegrastats on Jetsons (CPU, GPU)
 - NVIDIA-SMI on Desktop (GPU only)

TPCxAI results

Desktop outperforms Jetsons

→ But does not include network latencies

IT UNIVERSITY OF COPENHAGEN

What about cost- and power-efficiency?

- Desktop provides better price-to-performance ratio
- Xavier has better power consumption benchmark relies mostly on CPU

Zooming in on use cases

Benchmark provides good variety and stresses different parts of the pipeline

Use case 8

Most of the benchmark uses single thread to do data preprocessing
Time to finish use case 8 reduced by 70-84% by parallelizing single statement (fixed to 3 threads)

Conclusion

Machine learning on Jetsons:

- →Low memory can be limiting factor
- Desktop's powerful CPU compensates for this
- → Xavier is very energy-efficient
- Comparing Xavier and Desktop is hard

TPCxAI for edge:

- Even the lowest scaling factor too high for TX2
- Edge workloads are focused and closely coupled to hardware