
hardware parallelism &
transaction processing systems

Pınar Tözün
Associate Professor, IT University of Copenhagen

pito@itu.dk, www.pinartozun.com, @pinartozun

VLDB Summer School 2023 27/07/2023

www.itu.dk www.dasya.dk
 @dasyaITU

RAD
https://rad.itu.dk

mailto:pito@itu.dk
http://www.pinartozun.com/
https://twitter.com/pinartozun
http://www.itu.dk/
http://www.dasya.dk/
https://twitter.com/dasyaITU/
https://rad.itu.dk/

short-running simple requests
access small portion of the data

fetch several columns of a record
lookup, insert, delete, update

deposit money to a customer’s account,
lookup information about a product,

looking up a tweet, …

long-running complex requests
access lots of data

fetch a few columns of a record
SQL queries, map-reduce jobs,

machine learning, graph analytics, …

customers who are most likely to get
mortgages next year,

item sold the most last year in each
department of a store grouped by months, …

2

transaction vs. analytical processing

 primary applications for databases
 required functionality & optimizations differ

OLTP OLAP

evolution of general-purpose CPU

3

core core core core

core core core corecore

2005

multicore CPUs multisocket
multicore CPUs

single-core CPUs

faster & more-complex
cores over time

similar speed & complexity in a core,
more cores over time

… the hardware we run transactions on

types of hardware parallelism

4

core

multithreading
threads share

execution cycles
on the same core

instruction & data parallelism
hardware does this automatically

implicit/vertical parallelism

core

why do we need this?

single-core – access latency to storage
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

registers

ARCHIVAL STORAGE (tape)

NVMe SSD

hard disk
also

persistent

registers

1 cycle

~4 cycles

~10 cycles

~30-60 cycles

~100-200 cycles
or 60ns

~10 µsec

~100sec

~5m
s

types of hardware parallelism

6

core

multithreading
threads share

execution cycles
on the same core

instruction & data parallelism
hardware does this automatically

implicit/vertical parallelism

core

goal: minimize stall time due to cache/memory accesses
overlapping access latency for one item with other work

why?
we don’t want cores
to stay idle waiting
for instruction/data

accesses!

7

single-core – access latency to storage
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

PERSISTENT STORAGE (hard disk, ssd)

registers~4 cycles

in practice

as if there is no penalty

possible stalls

stalls

stalls =

types of hardware parallelism

8

core core core core

core core core core

single-core
instruction & data parallelism
simultaneous multithreading

why do we have this?

implicit/vertical parallelism explicit/horizontal parallelism

core

multicores
multiple threads run in

parallel on different cores

9

“… the observation that the number of
transistors in a dense integrated circuit

doubles approximately every two years.”

“ … as transistors get smaller their power
density stays constant, so that the power use

stays in proportion with area: both voltage and
current scale (downward) with length.”

wording courtesy of Wikipedia

Moore’s law

Dennard scaling

for Moore’s law to be practical
you need Dennard scaling!

10

sc
al

in
g

fa
ct

or

doubling of transistor counts continues
power and clock speeds hit the wall

2005

commodity CPU evolution

11

core core core core

core core core corecore

2005

multicore CPUs multisocket
multicore CPUs

single-core CPUs

Dennard scaling doesn’t hold anymore
switching to multicores kept Moore’s Law alive

types of hardware parallelism

12

core core core core

core core core core

single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

core

multicores
multiple threads run in

parallel on different cores

types of hardware parallelism

13

single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

multisocket multicores
multiple processors/CPUs

in one machine

core

types of hardware parallelism

14

single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

distributed systems
running a program over

multiple machines

core

• types of hardware parallelism
• implicit parallelism
• explicit parallelism

15

agenda

subscalar CPU (i.e., no implicit parallelism)

16

several cycles to complete two instructions,
assuming no long-latency data/memory accesses

2 3 4 5 6 7 8 9 10 11 121clock
cycle

single-core CPUinstruction 1

instruction 2

instruction 3

one instruction at a time

subscalar CPU (i.e., no implicit parallelism)

17

several cycles to complete two instructions,
assuming no long-latency data/memory accesses

2 3 4 5 6 7 8 9 10 11 121clock
cycle

CPU

one instruction at a time

fetch execute mem writedecode

fetch decode

fetch execute mem writedecodeinstr1

instr2

instr3

. . .

fetch
the instruction from the cache

decode
specifying which operation the instruction
performs and inputs it needs

execute
the operation itself

memory
 accessing the memory for inputs if needed
write

writing back the results into registers
18

RISC instruction stages

fetch execute mem writedecode

instruction pipelining

19
fundamental way to parallelize implicitly

2 3 4 5 6 7 8 9 10 11 121clock
cycle

CPU

overlapping stages of different instructions

fetch execute mem writedecode

fetch execute mem writedecodeinstr1

instr2

instr3

. . .

fetch execute mem writedecode

superscalar CPU

20

20

example of 4-way superscalar CPU

instr1

instr2

instr3

instr4

instr5

instr6

instr7

instr8

instr9

instr10

instr11

instr12

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

issuing multiple
instructions

in a cycle

out-of-order (OoO) execution

21

allows a processor to execute instructions based
on the availability of input data rather than strictly
following the instruction ordering of a program

example:
(1) r1 ← r2 / r3
(2) r4 ← r1 + r5
(3) r6 ← r7 * r8

independent from the previous two,
can be executed independently in
parallel or before 1 & 2

single instruction multiple data (SIMD)

22

SISD SIMD

instructions data

results

instructions data

results

also implicit data parallelism, but this one
has to be managed/issued by the software

core

simultaneous multithreading (SMT)

23

L1-I L1-D

L2

registers

more pressure on shared
hardware resources
(e.g., caches)

if not used right, may not give much benefit
or may even hurt performance

keep state/context of
multiple threads via
more register space

each CPU cycle,
you swap the thread
being executed

OS don’t have to do a
context switch for this

example of a core that
supports two hardware
contexts or logical threads

24

OLTP & implicit parallelism

0

1

2

3

4

TPC-C TPC-E

in
st

ru
ct

io
ns

 p
er

 c
yc

le
at peak throughput on Shore-MT,
Intel Xeon X5660 (4-way issue)

maximum

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

TPC-C TPC-E
ex

ec
ut

io
n

cy
cl

es
 b

re
ak

do
w

n

Stalled Busy

wholesale supplier brokerage house

no instr finished >= 1 instr finished

[EDBT13]

25

OLTP & implicit parallelism

0

1

2

3

4

TPC-C TPC-E

in
st

ru
ct

io
ns

 p
er

 c
yc

le
at peak throughput on Shore-MT,
Intel Xeon X5660 (4-way issue)

maximum

wholesale supplier brokerage house [EDBT13, DaMoN13]

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

TPC-C TPC-E
St

al
l C

yc
le

s B
re

ak
do

w
n

L3D
L3I
L2D
L2I
L1D
L1I

26

memory stalls in data-intensive apps

0%

25%

50%

75%

100%

0

1

2

3

4

To
ta

l E
xe

cu
tio

n
C

yc
le

s

A
pp

lic
at

io
n

IP
C

Application IPC Memory Cycles

CloudSuite on
Intel Xeon X5670

data-intensive apps suffer due to memory stalls
not just due to data but also instructions

[ASPLOS12]

https://cloudsuite.ch/

doesn’t mean these systems are bad
it means we are leaving performance on the table 27

what about in-memory OLTP?

0%

20%

40%

60%

80%

100%

Shore-MT DBMS D VoltDB HyPer DBMS M

ex
ec

ut
io

n
cy

cl
es

 b
re

ak
do

w
n

Stalled Busy

in-memorydisk-based

TPC-C, 100GB, Intel Ivy Bridge
[SIGMOD16]

28

transactions under microscope

Index Probe

Index Scan

Update Record

Delete Record

Insert Record

T1

T2

instances

Index Probe (X1)

Update Record (X1)

Index Probe (Y1)

Delete Record(Y1)

database
operations

Index Probe (X)

Update Record (X)

Index Probe (Y)

Insert Record (Z)

Delete Record (Y)

co
nd

iti
on

al

transaction

Index Probe (X2)

Update Record (X2)

Index Probe (Y2)

Insert Record(Z2)

Delete Record(Y2)many data-intensive requests are
composed of common instructions

29

instruction & data overlap

mix new order

da
ta

in
st

ru
ct

io
ns

payment

TPC-C (100GB data) on Shore-MT
overlapping cache blocks

cold hot

high for instructions, low for data

30

exploiting instruction commonality

T1

T2 T1

cores

1
T1

T1 T2

cores
conventional

L1I

3

5

7

1

2

3

4

T2

instances

tim
e

#cache
fills

#cache
fills

T1

T1 T2

T1 T2 T2 T1

T2 T1

can be software/hardware managed
up to 2X throughput of conventional on TPC-B/C/E

[MICRO12,
ISCA13,

PVLDB14]chasing instructions

• implicit parallelism isn’t completely free lunch

• >50% of cycles are stalls for traditional OLTP
• L1-I misses are significant

• Invest in
• utilizing instruction overlap across

transactions & aggregate L1-I cache capacity
• simplified code & cache-friendly data/code

layouts that favor hardware prefetchers
31

summary: OLTP & implicit parallelism

• types of hardware parallelism
• implicit parallelism
• explicit parallelism

32

agenda

core core core core

core core core core

core core core core

core core core core

scaling-up vs scaling-out

33

adding more cores in a single
server should give proportional

performance increase

scaling-up

core core core core

core core core core

adding more servers in a data
center should give proportional

performance increase

scaling-out

for regular folk!

scaling-up vs scaling-out

34

scaling-up

adding more servers in a data
center should give proportional

performance increase

scaling-out

for google, amazon …!

adding more data centers
should give proportional

performance increase

35

scaling-up

th
ro

ug
hp

ut

number of threads

th
ro

ug
hp

ut

number of threads

optimized

need better metrics to reason about scalability
throughput measurements are not enough

probe one customer, read balance on Shore-MT

next-gen hardware
4-processor server

[PVLDB11, PVLDB12, ICDE14]

1-processor
server = 8 cores

1

2

3 4

36

critical sections / synchronization
unbounded cooperative fixed

unbounded  fixed / cooperative

[PVLDB11]

shared
data

37

critical path of transaction execution

core core core core core core core core

data

system
state

threads

many unpredictable accesses to shared data

38

impact of unpredictable data accesses

data

index

probe one customer, update balance on ShoreMTworkers

0

10

20

30

40

50

60

70

cr
iti

ca
l s

ec
tio

ns
 p

er
 tr

an
sa

ct
io

n fixed

cooperative

unscalableunbounded

75% of critical sections are unbounded

39

physiological partitioning (PLP)

0

10

20

30

40

50

60

70

Conventional PLP
cr

iti
ca

l s
ec

tio
ns

 p
er

 tr
an

sa
ct

io
n fixed

cooperative

unscalable

range workers

R1: A – M

R2: N – Z

index R1 R2

data

probe one customer, update balance

unbounded

PLP eliminates 70% of critical sections

[PVLDB11]

40

critical sections as a metric?
th

ro
ug

hp
ut

number of threads

unbounded communication will hit you eventually
with NUMA even fixed/cooperative have issues

0

10

20

30

40

50

60

70

cr
iti

ca
l s

ec
tio

ns

fixed
cooperative
unbounded

conventional

remaining unbounded
is based on lock-free
or atomic mechanisms
instead of locks or mutexes

plp = optimized

plp = optimized

4-processor server

1

2

3 4

41

NUMA impact

core

L1-I L1-D

MAIN MEMORY

L2

L3

PERSISTENT STORAGE

registers
core

L1-I L1-D

L2

registers
core

L1-I L1-D

MAIN MEMORY

L2

L3

registers
core

L1-I L1-D

L2

registers

CPU

<10 cycles ~50 cycles 500 cycles

42

ATraPos: NUMA-aware PLP

core core

system
state

core core

update
table A

update
table B

[ICDE14]

limit unbounded communication within a socket
keep access latencies predictable

system
state

43

summary: OLTP & explicit parallelism

• high throughput != scalable
• lock freedom != scalable
• eliminate any unbounded communication
• keep fixed/cooperative communication among cores

with similar/predictable access latency
 avoid sharing data among cores on different processors,
share within a processor (i.e., avoid NUMA impact)

main memory

44

today: traditional vs. modern OLTP

disk

buffer manager

caches

multicore CPU

traditional main-memory-optimized

• no disk use during analytical
queries or transactions

• lightweight logging &
replication for recovery

• optimize for SSDs instead

• no/light buffer manager
• data organized for better

cache utilization/accesses

• non-blocking concurrency control
• query compilation that generates

more efficient code

45

46

references / credits for the slides
slides 16-17, 19-20, & 22-23 are adopted from Erietta Liarou’s slides for our ICDE15 tutorial
slide 37 & 41-42 are adopted from Danica Porobic’s slides from ICDE14

[ASPLOS12] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D.
Popescu, A. Ailamaki, B. Falsafi. Clearing the Clouds: A Study of Emerging Scale-out Workloads on
Modern Hardware.
[DaMoN13] P. Tözün, B. Gold, and A. Ailamaki: OLTP in Wonderland -- Where do cache misses come
from in major OLTP components?
[EDBT13] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, A. Ailamaki. From A to E: Analyzing TPC’s OLTP
Benchmarks – The obsolete, the ubiquitous, the unexplored.
[ICDE14] D. Porobic, E. Liarou, P. Tözün, A. Ailamaki. ATraPos: Adaptive Transaction Processing on
Hardware Islands.
[ICDE15] A. Ailamaki, E. Liarou, P. Tözün, D. Porobic, I. Psaroudakis. How to Stop Underutilization and
Love Multicores.
[ISCA13] I. Atta, P. Tözün, X. Tong, A. Ailamaki, A. Moshovos. STREX: Boosting Instruction Cache Reuse in
OLTP Workloads through Stratified Transaction Execution.

47

references / credits for the slides
[PVLDB14] P. Tözün, I. Atta, A. Ailamaki, A. Moshovos. ADDICT: Advanced Instruction Chasing for
Transactions.
[SIGMOD16] U. Sirin, P. Tözün, D. Porobic, A. Ailamaki. Micro-architectural Analysis of In-memory OLTP.
[MICRO12] I. Atta, P. Tözün, A. Ailamaki, A. Moshovos. SLICC: Self-Assembly of Instruction Cache
Collectives for OLTP Workloads.
[PVLDB11] I. Pandis, P. Tözün, R. Johnson, A. Ailamaki. PLP: page latch-free shared-everything OLTP.
[PVLDB12] D. Porobic, I. Pandis, M. Branco, P. Tözün, A Ailamaki. OLTP on Hardware Islands.

48

other references for the interested
[CIDR15] M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, A. Ailamaki. Just-in-time data
virtualization: Lightweight data management with ViDa.
[DEBull14] T. Neumann, V. Leis. Compiling Database Queries into Machine Code.
[DEBull19] P. Tözün, H. Kotthaus. Scheduling Data-Intensive Tasks on Heterogeneous Many Cores.
[Eurosys12] Y. Mao, E. Kohler, and R. Morris: Cache Craftiness for Fast Multicore Key-Value Storage.
[ICDE10] K. Krikellas, S. D. Viglas, M. Cintra: Generating code for holistic query evaluation.
[ICDE14a] H. Han, S. Park, H. Jung, A. Fekete, U. Roehm, and H. Yeom : Scalable Serializable Snapshot
Isolation for Multicore Systems.
[ICDE14b] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker: Rethinking Main Memory OLTP
Recovery.
[ISCA01] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn, J. Larriba-Pey, P. G. Lowney, and M.
Valero: Code Layout Optimizations for Transaction Processing Workloads.
[MICRO13] C. Kaynak, B. Grot, and B. Falsafi: SHIFT: Shared History Instruction Fetch for Lean-Core
Server Processors.
[PCS13] B. Vikranth, R. Wankar, and C. Rao: Topology Aware Task Stealing for On-chip NUMA Multi-core
Processors.
[PVLDB10] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki: Aether: A Scalable
Approach to Logging.

49

other references for the interested
[PVLDB11] T. Neumann: Efficiently compiling efficient query plans for modern hardware.
[PVLDB12] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling: High-performance
concurrency control mechanisms for main-memory databases.
[PVLDB13] K. Ren, A. Thomson, and D. J. Abadi: Lightweight locking for main memory database systems.
[PVLDB14] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi: Building Efficient Query Engines in a High-Level
Language.
[PVLDB15] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker: Staring into the Abyss: An
Evaluation of Concurrency Control with One Thousand Cores.
[SIGMOD10] E. P. Jones, D. J. Abadi, and S. Madden: Low overhead concurrency control for partitioned
main memory databases.
[SIGMOD13] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher, N. Verma, and M.
Zwilling: Hekaton: SQL Server’s memory-optimized OLTP engine.
[SOSP13] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden: Speedy transactions in multicore in-
memory databases.
[VLDB07] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland: The end
of an architectural era: (it’s time for a complete rewrite).
[VLDBJ] T Bang, N May, I Petrov, C Binnig. The full story of 1000 cores: An examination of concurrency
control on real (ly) large multi-socket hardware.

backup

50

• to partition or not to partition?
• lightweight locks & concurrency control still doesn’t

prevent unbounded communication
• even if you don’t go strict partitioning route, you need

some partitioning to limit unbounded communication

• transaction processing & hardware accelerators?
• Dennard scaling still doesn’t hold
• economies of scale also doesn’t hold
• hardware specialization is inevitable

• in-memory-optimized vs. SSD-optimized ?
51

kicking of the discussion

Hardware gives different parallelism opportunities.

Software systems used to be ignorant of this
parallelism because it used to be mainly implicit.

Today, systems do not have this luxury because we
have more and more explicit parallelism.

In the future, this parallelism will also increasingly
be provided by heterogeneous processing units.

52

summary: hardware parallelism

goal: design systems that are aware of the hardware
parallelism (ideally all types of it) & its implications!

some downsides
startups/restarts are expensive
• need to load everything in-memory
• indexes has to be rebuilt
• recovery takes longer if not done carefully
could be expensive to store all data in memory
• most main-memory systems

later added support for
efficiently accessing cold
data from disk

• today, more & more
SSD-optimized systems
instead 53

main-memory database systems

figure source

http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf

micro-architecture of an OoO processor core
figure from Utku Şirin’s
DaMoN 2017 presentation

delays in fetching, decoding, etc. an instruction
cause frontend stalls, rest cause backend stalls

54

https://www.dropbox.com/s/mk3ffmsdv85u86s/damon17_presentation.pdf?dl=0

•simplified code
• newer in-memory-optimized systems have a smaller instruction

footprint compared to traditional disk-based ones

•better code layout
• minimize jumps  better utilizing hardware prefetchers
• profiler-guided optimizations (static)
• just-in-time (dynamic)

•better code compilation
• e.g., HyPer, Umbra, Hekaton, MemSQL

•improving index layouts  for data access efficiency
55

what else can be done?

[CIDR15]

single instruction multiple data (SIMD)

56

SIMD

instructions data

results

also implicit data parallelism, but this one
has to be managed/issued by the software

if you want to apply the
same instructions over
multiple data items

GPUs are built on this
principle

single instruction multiple data (SIMD)

57

SISD SIMD

instructions data

results

instructions data

results

GPUs are like SIMD machines
they support extreme parallelism

from lecture 3

single instruction multiple thread (SIMT)

58

instructions

SIMT

data

results

GPUs are based on SIMT

SIMT

data

results

SIMT

data

results

. . .

59

instruction & data overlap

mix new order

da
ta

in
st

ru
ct

io
ns

payment

TPC-C (100GB data) on Shore-MT
overlapping cache blocks

cold hot

different transaction instances are
composed of common instructions

[PVLDB14]

60

how to achieve the goal?

heterogeneous manycores

co
re

s
da

ta
-in

te
ns

iv
e

ta
sk

s

la
rg

e
in

di
vi

sib
le

un
its

 o
f w

or
k

homogeneous multicores

black-box view leads to sub-
optimal hardware utilization

finer-grained view helps with
hardware-consciousness

co
m

po
se

d
of

 b
ui

ld
in

g
bl

oc
ks

1

finer-grained view based on data/instructions

2

adaptive
scheduling
based on
building
blocks

3
specialized
cores

thank you! [DeBull19]

• types of hardware parallelism
• implicit parallelism
• explicit parallelism
• adding heterogeneity

61

lecture agenda

dark silicon

62

can still pack more cores in a processor
cannot fire all of them up simultaneously

[ISCA11, MICRO11]

0

1

2

3

4

5

6

2009 2013 2017 2021 2025

sc
al

in
g

fa
ct

or

year

Transistor Scaling
(Moore's Law)
Supply Voltage Scaling
(Dennard Scaling)

63

what this means (for servers)

multisocket
multicores

many (light) cores many diverse cores

today’s commodity future’s commodity

more parallelism & heterogeneity
most software systems are not ready for either

64

lighter cores

not feasible for latency critical tasks

[MICRO10]

can be less energy-efficient in the long run

65

diverse cores

better long-term solution, but creates mess

• finer-grained scheduling & energy management
• controlling which cores are active at a time running what

types of tasks & what frequency cores run on

• language support & advanced query compilation
• high-level languages for programs, then compile that onto

different cores where instruction sets may be different

• right use case for specialization
• must pick frequent & important tasks to accelerate –

otherwise, no economic viability
66

exploiting diversity
[DaMoN14, SIGMOD18a, SIGMOD18b]

[DEBull14, CIDR15, PVLDB16]

67

today’s landscape

microsoft’s catapult
google’s tpu

nvidia’s volta/titan

oracle’s dax

CPU
CPU-lite,

FPGA,
GPU

FPGA,
ARM,
ASIC

SSD,
NVM,

DRAM

specialization in the cloud

co-processors near-data processing

aws aqua

68

references / credits
links for “today’s landscape” slide:
https://www.microsoft.com/en-us/research/project/project-catapult/
https://cloud.google.com/tpu/
https://www.arm.com/products/processors/biglittleprocessing.php
https://www.altera.com/solutions/acceleration-hub/overview.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.ibm.com/support/knowledgecenter/en/POWER9/p9hdx/POWER9welcome.htm
https://swisdev.oracle.com/DAX/DAXwhatis.php
https://github.com/DFC-OpenSource
http://lightnvm.io/
https://blocksandfiles.com/2019/12/05/amazon-aqua-data-warehouse-acceleration-hardware/

https://www.microsoft.com/en-us/research/project/project-catapult/
https://cloud.google.com/tpu/
https://www.arm.com/products/processors/biglittleprocessing.php
https://www.altera.com/solutions/acceleration-hub/overview.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.ibm.com/support/knowledgecenter/en/POWER9/p9hdx/POWER9welcome.htm
https://swisdev.oracle.com/DAX/DAXwhatis.php
https://github.com/DFC-OpenSource
http://lightnvm.io/
https://blocksandfiles.com/2019/12/05/amazon-aqua-data-warehouse-acceleration-hardware/

69

references for the backup
[DaMoN14] I. Psaroudakis, T. Kissinger, D. Porobic, T. Ilsche, E. Liarou, P. Tözün, A. Ailamaki, W. Lehner.
Dynamic Fine-Grained Scheduling for Energy-Efficient Main-Memory Queries.
[DEBull19] P. Tözün, H. Kotthaus. Scheduling Data-Intensive Tasks on Heterogeneous Many Cores.
[ISCA11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger. Dark Silicon and the End
of Multicore Scaling.
[MICRO10] U. Hölzle. Brawny cores still beat wimpy cores, most of the time.
[MICRO11] N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki. Toward Dark Silicon in Servers.
[PVLDB16] H. Pirk, O. Moll, M. Zaharia, S. Madden. Voodoo - A Vector Algebra for Portable Database
Performance on Modern Hardware.
[SIGMOD18a] T. Kissinger, D. Habich, W. Lehner. Adaptive Energy-Control for In-Memory Database
Systems.
[SIGMOD18b] M. Korkmaz, M. Karsten, K. Salem, S. Salihoglu. Workload-Aware CPU Performance
Scaling for Transactional Database Systems.

	hardware parallelism &�transaction processing systems
	transaction vs. analytical processing
	evolution of general-purpose CPU
	types of hardware parallelism
	single-core – access latency to storage
	types of hardware parallelism
	single-core – access latency to storage
	types of hardware parallelism
	Slide Number 9
	Slide Number 10
	commodity CPU evolution
	types of hardware parallelism
	types of hardware parallelism
	types of hardware parallelism
	agenda
	subscalar CPU (i.e., no implicit parallelism)
	subscalar CPU (i.e., no implicit parallelism)
	RISC instruction stages
	instruction pipelining
	superscalar CPU
	out-of-order (OoO) execution
	single instruction multiple data (SIMD)
	simultaneous multithreading (SMT)
	OLTP & implicit parallelism
	OLTP & implicit parallelism
	memory stalls in data-intensive apps
	what about in-memory OLTP?
	transactions under microscope
	instruction & data overlap
	exploiting instruction commonality
	summary: OLTP & implicit parallelism
	agenda
	scaling-up vs scaling-out
	scaling-up vs scaling-out
	scaling-up
	critical sections / synchronization
	critical path of transaction execution
	impact of unpredictable data accesses
	physiological partitioning (PLP)
	critical sections as a metric?
	NUMA impact
	ATraPos: NUMA-aware PLP
	summary: OLTP & explicit parallelism
	today: traditional vs. modern OLTP
	Slide Number 45
	references / credits for the slides
	references / credits for the slides
	other references for the interested
	other references for the interested
	backup
	kicking of the discussion
	summary: hardware parallelism
	main-memory database systems
	micro-architecture of an OoO processor core
	what else can be done?
	single instruction multiple data (SIMD)
	single instruction multiple data (SIMD)
	single instruction multiple thread (SIMT)
	instruction & data overlap
	how to achieve the goal?
	lecture agenda
	dark silicon
	what this means (for servers)
	lighter cores
	diverse cores
	exploiting diversity
	today’s landscape
	references / credits
	references for the backup

