

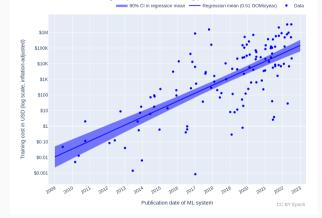
IT UNIVERSITY OF COPENHAGEN

dasya.itu.dk

rad.itu.dk

dff.dk

itu.dk


Data Management and Visualization for Benchmarking Deep Learning Training Systems

Ties Robroek, Aaron Duane, Ehsan Yousefzadeh-Asl-Miandoab, Pınar Tözün (IT University of Copenhagen)

7th Workshop on Data Management for End-to-End Machine Learning (DEEM) June 18th, 2023

Need for systematic benchmarking with hardware metrics

- Energy and resource consumption is increasingly relevant
- Resource costs relevant on both academic and industrial scale

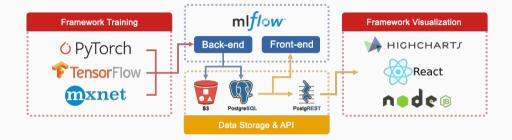
Estimated training compute cost in USD: using price-performance trend

 $\label{eq:https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems$

▶ 1. Wide configuration support including collocation

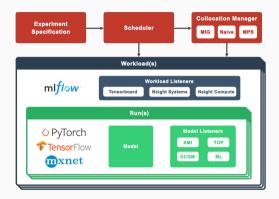
- > 2. Track hardware metrics in addition to software metrics
- ▶ 3. Handle continuous streams of data
- ▶ 4. Support multiple visualization use-cases
- ▶ 5. Filter large amounts of inconsequential data
- ▶ 6. Minimal code impact

- ▶ 1. Wide configuration support including collocation
- > 2. Track hardware metrics in addition to software metrics
- ▶ 3. Handle continuous streams of data
- ▶ 4. Support multiple visualization use-cases
- ▶ 5. Filter large amounts of inconsequential data
- ▶ 6. Minimal code impact


- ▶ 1. Wide configuration support including collocation
- > 2. Track hardware metrics in addition to software metrics
- > 3. Handle continuous streams of data
- ▶ 4. Support multiple visualization use-cases
- ▶ 5. Filter large amounts of inconsequential data
- ▶ 6. Minimal code impact

- ▶ 1. Wide configuration support including collocation
- > 2. Track hardware metrics in addition to software metrics
- > 3. Handle continuous streams of data
- ▶ 4. Support multiple visualization use-cases
- ▶ 5. Filter large amounts of inconsequential data
- ▶ 6. Minimal code impact

- ▶ 1. Wide configuration support including collocation
- > 2. Track hardware metrics in addition to software metrics
- > 3. Handle continuous streams of data
- ▶ 4. Support multiple visualization use-cases
- ▶ 5. Filter large amounts of inconsequential data
- ▶ 6. Minimal code impact


- ▶ 1. Wide configuration support including collocation
- > 2. Track hardware metrics in addition to software metrics
- > 3. Handle continuous streams of data
- ▶ 4. Support multiple visualization use-cases
- ▶ 5. Filter large amounts of inconsequential data
- ▶ 6. Minimal code impact

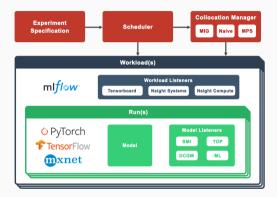
Resource-Aware Data systems Tracker (radT)

- Tracking and visualization of resources
- Extends MLFlow

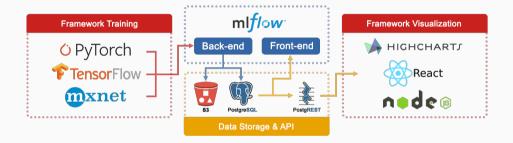
1. Wide configuration support including collocation

- ▶ Single model training (*run*) can be collocated together (*workload*)
- Workloads can be scheduled supporting large experiments

1. Wide configuration support including collocation


~\$ radt model.py --batch-size 256_

 \rightarrow


:~\$ python model.py --batch-size 256

1	Experiment,	Workload,	Status,Ru	n,C	Devices, <mark>Co</mark>	llocation, File, Listeners,Params
2	1,	1,			0,	-,model.py,smi+top+dcgmi,batch-size=128
3	1,	1,			1,	-,model.py,smi+top+dcgmi,batch-size=128
4	1,	2,			2,	<pre>3g.20gb,model.py,smi+top+dcgmi,batch-size=128</pre>
5	1,	2,			2,	<pre>3g.20gb,model.py,smi+top+dcgmi,batch-size=128</pre>
6	1,	З,			1,	-,model.py,smi+top+dcgmi,batch-size=256

2. Track hardware and software metrics

- Model Listeners: per run
- ▶ Workload Listeners: exclusive

- Base configuration of MLFlow provides poor data scaling and interoperability
- MLFlow integration with dedicated PostgreSQL and S3 storage.

4. Support multiple visualization use-cases

Default	Workload 1-0		• d269e4 - 0.E.MPS (3 days ago)	00:01:21	Workload 1-3	1e5a41 - 0.B.MPS 👩
1 Prepared Workloads	Workload 1-1		• 520069 - 0.F.MPS (3 days ago)	00:01:20 👩		94a538 - 0.G.MPS 520069 - 0.F.MPS 8
2 Live Demo	Workload 1-2		• 94a538 - 0.G.MPS (3 days ago)	00:01:24	🔞 Worldoad 1-0	-
	Workload 1-3	V	• 1e5a41 - 0.8.MPS (3 days ago)	00:01:24		f71f5a - 1 🔞 e7da63 - 1 😒
			• 280b95 - 0.C.MPS (3 days ago)	00:01:23	Workload 2-21	5bc32f - 1 👩
			• 593a86 - 0.D.MPS (3 days ago)	00:01:23		500321 - 1 😈
			• 9d355a - 0.A.MPS (3 days ago)	00:01:23		
					Clear All	Save

Select data to compare in a hierarchical way

5. Filter large amounts of inconsequential data

Create and share insights

6. Minimal code impact


```
from radtrun import radT
...
with radT() as run:
# Training loop
```

- No code required for hardware metric tracking
- Software tracking via MLFlow integration

 Minimal code for finer-grained control

Conclusion

▶ We need systematic benchmarking of both software and hardware resources

https://github.com/Resource-Aware-Data-systems-RAD/radt

- > Track small and large experiments, including collocated ones
- Real-time, scalable data tracking and processing
- Efficient and effective data exploration

Fhank you!

T UNIVERSITY OF COPENHAGEN

dasya.itu.dk

rad.itu.dk

dff.dk

itu.dk

Conclusion

> We need systematic benchmarking of both software and hardware resources

https://github.com/Resource-Aware-Data-systems-RAD/radt

- Track small and large experiments, including collocated ones
- Real-time, scalable data tracking and processing
- Efficient and effective data exploration

Thank you!

T UNIVERSITY OF COPENHAGEN

dasya.itu.dk

rad.itu.dk

dff.dk

itu.dk